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ABSTRACT

We show how a joint factor analysis of inter-speaker and
intra-speaker variability in a training database which con-
tains multiple recordings for each speaker can be used to
construct likelihood ratio statistics for speaker verification
which take account of intra-speaker variation and channel
variation in a principled way. We report the results of ex-
periments on the NIST 2001 cellular one speaker detection
task carried out by applying this type of factor analysis to
Switchboard Cellular Part I. The evaluation data for this
task is contained in Switchboard Cellular Part I so these
results cannot be taken at face value but they indicate that
the factor analysis model can perform extremely well if it is
perfectly estimated.

1. INTRODUCTION

Broadly speaking, state of the art methods in speech recog-
nition and speaker recognition attempt to compensate for
channel variation and intra-speaker variation — or chan-
nel variation for short, even if this is not strictly correct —
by normalization techniques such as cepstral mean subtrac-
tion and feature warping and to model inter-speaker vari-
ation by adaptation techniques such as MLLR and EMAP
(in the case of speech recognition) and classical MAP (in
the case of speaker recognition). All of these model adap-
tation techniques conflate inter-speaker variation and chan-
nel variation so that they may be performing channel adap-
tation in some situations and speaker adaptation in others.
Whether this is a bad thing in the case of speech recog-
nition is not clear (nobody seems to have looked into the
matter) but there is no question that it raises problems for
speaker recognition. The challenge in the current NIST one
speaker detection evaluations is to recognize a speaker given
enrollment data extracted from a single recording and test
data extracted from other recordings. Estimating a GMM
from a speaker’s enrollment data by classical MAP [1] pro-
duces a model which is adapted to the enrollment record-
ing conditions as well as to the speaker. Using this GMM
to recognize the speaker under different recording condi-
tions is therefore problematic. It seems that collecting en-
rollment data from multiple sessions for each target speaker

is the only way to deal with channel variation in speaker
recognition using standard model adaptation methods. On-
line model adaptation techniques used in speech recognition
such as MLLR and EMAP do not seem to be applicable to
this problem precisely because they conflate channel varia-
tion and inter-speaker variation. So, although intra-speaker
variation and channel variation are of critical importance for
speaker recognition, the problem of how to model these ef-
fects (rather than trying to eliminate them in the front end)
has hardly been studied.

In this paper we will indicate how, given a database
comprising a large number of speakers in which each
speaker is recorded under many different conditions, we
can jointly model inter-speaker and channel variability by
a probabilistic factor analysis. Our basic assumption is
that speaker- and channel-dependentGMM supervectors are
Gaussian distributed with most (but not all) of the variance
in these supervectors being accounted for by a small num-
ber of hidden variables which we refer to as speaker and
channel factors. The speaker factors and the channel fac-
tors play different roles in that, for a given speaker, the val-
ues of the speaker factors are assumed to be the same for
all recordings of the speaker but the channel factors are as-
sumed to vary from one recording to another. (Thus the
channel factors may be capturing either channel variation or
intra-speaker variation.) The prior on speaker-dependent su-
pervectors used in eigenvoice MAP [2, 3] is a special case of
the factor analysis model in which there are no channel fac-
tors and all of the variance in the speaker-dependent GMM
supervectors is assumed to be accounted for by the speaker
factors. (In this case, for a given speaker, the values of the
speaker factors are the co-ordinates of the speaker’s super-
vector relative to a suitable basis of the eigenspace.) The
general factor analysis model is constructed by combining
the prior for eigenvoice MAP with the priors for classical
MAP and eigenchannel MAP [3].

We will report the results of speaker verification experi-
ments on the NIST 2001 cellular one speaker detection task
[4] using likelihood ratio statistics derived from factor anal-
ysis models trained on Switchboard Cellular Part I. The
2001 evaluation data was described in [4] as ‘drawn from
the Switchboard-II Corpus, Phase 4’ but it turns out that it
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is actually entirely contained in Switchboard Cellular Part
I. Thus there is a flaw in our experimental design and it can-
not be easily remedied since most of the speakers in Switch-
board Cellular Part I serve as target speakers in the evalua-
tion and there are no other cellular databases currently avail-
able through the LDC. Our results are extraordinarily good
but they only indicate how well the factor analysis model
can perform if it is perfectly estimated.

2. FACTOR ANALYSIS

We assume a fixed GMM structure containing a total of C
mixture components. Let F be the dimension of the acous-
tic feature vectors.

2.1. Speaker and Channel factors

To begin with let us ignore the question of channel variation
and assume that each speaker s can be modeled by a single
supervector M(s) which is independent of channel effects.
Classical MAP assumes that there is a diagonal matrix d
such that, for a randomly chosen speaker s,

M(s) = m + dz(s) (1)

where m is the speaker-independent supervector and z(s) is
a hidden vector distributed according to the standard Gaus-
sian density, N(z|0, I). Eigenvoice MAP assumes instead
that there is a rectangular matrix v of low rank such that, for
a randomly chosen speaker s,

M(s) = m + vy(s) (2)

where y(s) is a hidden vector having a standard normal dis-
tribution. The strengths and weaknesses of classical MAP
and eigenvoice MAP complement each other. (Eigenvoice
MAP is preferable if small amounts of data are available for
speaker adaptation and classical MAP if large amounts are
available.) An obvious strategy to combine the two is to
assume a decomposition of the form

M(s) = m + vy(s) + dz(s) (3)

where y(s) and z(s) are assumed to be independent and
have standard normal distributions. In this case it is no
longer appropriate to speak of eigenvoices; rather v is a
‘factor loading matrix’ and the components of y(s) are
‘speaker factors’.

Now let us consider channel effects. Suppose we are
given recordings h = 1, . . . , H(s) of a speaker s. For each
recording h, let Mh(s) denote the corresponding speaker-
and channel-dependent supervector. We assume that the dif-
ference between Mh(s) and M(s) can be accounted for by
a vector of channel factors xh(s) having a standard normal
distribution. That is, we assume that there is a rectangular

matrix u of low rank (the loading matrix for the channel
factors) such that

M(s) = m + vy(s) + dz(s)
Mh(s) = M(s) + uxh(s)

}
(4)

for each recording h = 1, . . . , H(s).
So if RC is the number of channel factors and RS the

number of speaker factors, our factor analysis model is
specified by a quintuple Λ of hyperparameters of the form
(m, u, v, d,Σ) where m is CF × 1, u is CF × RC , v
is CF × RS and d and Σ are CF × CF diagonal ma-
trices. To explain the role of Σ, fix a mixture component
c and let Σc be the corresponding block of Σ. For each
speaker s and recording h, let Mhc(s) denote the subvector
of Mh(s) corresponding to the given mixture component.
We assume that, for all speakers s and recordings h, ob-
servations drawn from mixture component c are distributed
with mean Mhc(s) and covariance matrix Σc.

2.2. The likelihood function

Suppose that we are given a set of hyperparameter esti-
mates Λ and a set of recordings for a speaker s indexed
by h = 1, . . . , H(s). For each recording h, assume that
each frame has been aligned with a mixture component
and let Xh(s) denote the collection of labeled frames for
the recording. (We used a speaker-independent GMM or
gender-dependent GMM to do the alignment in our exper-
iments.) Let X (s) be the vector obtained by concatenating
the observable variables X1(s), . . . ,XH(s)(s) and let X(s)
be the vector obtained by concatenating the unobservable
variables x1(s), . . . , xH(s)(s), y(s), z(s). If X(s) were
given we could write down Mh(s) and calculate the (Gaus-
sian) likelihood of Xh(s) for each recording h so the calcu-
lation of the joint likelihood of X (s) would be straightfor-
ward. Since the values of the hidden variables are not given,
calculating this joint likelihood requires evaluating the inte-
gral

∫
PΛ(X (s)|X)N(X |0, I)dX (5)

where N(X|0, I) is the standard Gaussian kernel

N(x1|0, I) . . . N(xH(s)|0, I)N(y|0, I)N(z|0, I).

We denote the value of this integral by PΛ(X (s)).

2.3. Estimating the hyperparameters

If we are given a training set in which each speaker is
recorded in multiple sessions the hyperparameters Λ can
be estimated by an EM algorithm which guarantees that the
total likelihood of the training data increases from one iter-
ation to the next. (The total likelihood of the training data
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is
∏

s PΛ(X (s)) where s ranges over the speakers in the
training set.) This estimation procedure can be derived by
extending Proposition 3 in [2] to handle the hyperparame-
ters u and d in addition to v and Σ. We refer to this as
the speaker-independent hyperparameter estimation proce-
dure since it consists in fitting (4) to the entire collection
of speakers in the training data rather than to an individual
speaker.

In order to construct a likelihood ratio statistic for
speaker verification, we also need a speaker-dependent es-
timation procedure. For this we assume that, for a given
speaker s and recording h,

M(s) = m(s) + v(s)y(s) + d(s)z(s)
Mh(s) = M(s) + uxh(s).

}
(6)

That is, we make the hyperparameters m, v and d speaker-
dependent but we continue to treat u and Σ as speaker-
indendent. Given enrollment data for the speaker s, we es-
timate the speaker-dependent hyperparameters m(s), v(s)
and d(s) by first using the speaker-independent hyperpa-
rameters and the enrollment data to calculate the poste-
rior distribution of M(s) and then adjusting the speaker-
dependent hyperparameters to fit this posterior. (More
specifically, we find the prior of the form m(s)+v(s)y(s)+
d(s)z(s) which is closest to the posterior in the sense that
the Kullback-Leibler divergence is minimized. This idea
is borrowed from [5].) Thus m(s) is an estimate of the
speaker’s supervector when channel effects are abstracted
and d(s) and v(s) measure the uncertainty in this estimate.

Set Λ(s) = (m(s), u, v(s), d(s),Σ).

2.4. The likelihood ratio statistic

Given speaker-independent hyperparameters Λ and enroll-
ment data for a speaker s, we estimate a set of speaker-
dependent hyperparameters Λ(s). Given speech data X (t)
uttered by a test speaker t, to test the hypothesis that t = s
against the hypothesis that t �= s we use the likelihood ratio

1
T

log
PΛ(s)(X (t))
PΛ(X (t))

(7)

where T is the duration of the test utterance.

3. EXPERIMENTS

3.1. Signal processing

Speech data was sampled at 8 kHz and 12 liftered mel
frequency cepstral coefficients and a log energy parameter
were calculated at a frame rate of 10 ms. The acoustic fea-
ture vector consisted of these 13 parameters together with
their first derivatives. Cepstral mean subtraction was not
performed since the channel factors in the factor analysis

model can account for convolutional noise. Similarly, the
energy feature was not normalized. Except where otherwise
indicated we did not use a silence detector on the enrollment
and test data.

3.2. Fitting the model to Switchboard Cellular Part I

The Switchboard Cellular Part I corpus contains stereo
recordings of 1306 conversations (each of 6 minutes dura-
tion) involving 254 speakers (129 females and 125 males).
We limited ourselves to 10 conversation sides per speaker
for computational reasons. We processed the data with an
echo canceller and we used a silence detector to segment
the data into conversation turns. Conversation turns were
padded with silences to roughly match the speech/silence
distribution in the NIST 2001 cellular data. The total
amount of data used was 94 hours (including silences). We
refer to this data set as the training set to distinguish it
from the enrollment data for the target speakers provided
by NIST.

We used 12 hours of training data (one conversation side
per speaker) to estimate a speaker-independent GMM with
2K Gaussians by Baum-Welch training and 10 iterations of
the speaker-independent hyperparameter estimation proce-
dure to fit a factor analysis with 40 channel factors and 40
speaker factors. An indication of how the model fits the data
can be obtained by noting that the trace of uu∗ gives a mea-
sure of the amount of variability in the training set which is
attributable to channel effects and the trace of d2 + vv∗ is
a measure of inter-speaker variability. The figures are

tr
(
d2

)
= 2388

tr (vv∗) = 2.35 × 107

tr (uu∗) = 1.78 × 107.

The first thing to note here is that d is negligeable com-
pared to v. Our reason for introducing d was to remedy the
rank deficiency problem in eigenvoice MAP but these fig-
ures suggest that this may not be a real problem after all,
at least for the GMM configuration and training set under
consideration here. Even more striking is the fact that the
channel variability in the training set is almost as large as the
speaker variability which raises the question of how speaker
recognition is possible at all. We can offer a plausible an-
swer to this question by pretending that the supervectors
Mh(s) are observable. If we treat d as negligeable, then
a supervector Mh(s) can be written in the form m + s + c
where s (the speaker contribution) lies in the range of v and
c (the channel contribution) lies in the range of u. Since the
range of v and the range of u are 40-dimensional subspaces
of a very high dimensional space they (typically) only inter-
sect at the origin. It follows that a decomposition of the form
m+s+c is necessarily unique. (If m+s+c = m+s′+c′

then s− s′ = c′ − c. The left hand side here is in the range
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of v and the right hand side is in the range of u so the com-
mon has to be 0.) Thus s — and hence the identity of the
speaker — is uniquely determined by Mh(s).

3.3. Tests on NIST 2001 cellular data

By taking Switchboard Cellular Part I as our training set we
inadvertently used all of the NIST 2001 cellular test data as
well as additional enrollment data for the target speakers in
estimating the speaker-independent hyperparameters. Al-
though we used only the enrollment data provided by NIST
for speaker-dependent hyperparameter estimation, the fact
that the speaker-independent hyperparameters serve as the
starting point for speaker-dependent hyperparameter esti-
mation means that our experiment results on the NIST 2001
data cannot be taken at face value.

In the 2001 evaluation there were 174 target speakers
(74 males and 100 females). For each target speaker 2 min-
utes of enrollment data extracted from a single conversa-
tion side were provided. Enrollment data was also provided
for 38 male and 22 female development speakers which we
used as T-Norm speakers. Test utterance durations ranged
from 15 to 45 seconds (with some exceptions). There were
2038 distinct test utterances (850 male, 1188 female) with
10 imposter trials and 1 target trial for each utterance. The
data consists of whole conversation turns (so that silences
account for about 25% of the total) and was processed with
an echo canceller (although there are plenty of residual
echoes).

The results of a speaker verification experiment using
the model described in Section 3.2 and the likelihood ratio
statistic (7) are given in line 1 of Table 1. Lines 2–6 report

Gaussians SD GD TN DCF EER

1 2048 0.026 4.0%
2 2048 X 0.021 3.7%
3 2048 X X 0.023 3.4%
4 4096 X 0.023 3.4%
5 2048 X X 0.016 2.5%
6 4096 X X 0.017 2.5%

Table 1. Speaker verification experiments on the NIST
2001 cellular test set with ‘perfect’ estimates of the speaker-
independent hyperparameters. SD = Silence Detection, GD
= Gender Dependent, DCF = Detection Cost Function,
EER = Equal Error Rate.

the results obtained with several variants of the factor anal-
ysis model. All variants had the same number of speaker
and channel factors. Comparing lines 1 and 2 shows that T-
Norm is effective. Comparing lines 2 and 3 shows that us-
ing a silence detector leads a slight degradation in the DCF
and a slight improvement in the EER. Comparing lines 2

and 5 shows that making the factor analysis hyperparame-
ters gender-dependent rather than gender-independent gives
a substantial improvement. Increasing the number of Gaus-
sians from 2048 to 4096 does not appear to help in either
the gender-dependent or gender-independent case (compare
line 2 with line 4 and line 5 with line 6).

4. DISCUSSION

Considering that state of the art speaker verification systems
generally obtain DCF’s of about 0.03 and EER’s of about
8% on the NIST evaluation sets the results in Table 1 are
probably too good to be true and may be attributable in large
part to the flaw in our experimental design. Unfortunately
the NIST evaluation sets and the Switchboard Corpora have
been designed in such a way as to make it difficult to test the
factor analysis model properly (that is, with disjoint training
and test sets). For example, using the NIST 2002 or 2003
evaluation data for testing and Switchboard Cellular Part I
for training would not be appropriate since the evaluation
data consists principally of CDMA transmissions and there
are essentially no CDMA transmissions in the training data.
Again, if we used the NIST 2000 evaluation data for testing
and Switchboard II Phase 3 for training, the speaker popu-
lations would be mismatched (the test speakers would all be
from the American Midwest and Northeast and the training
speakers from the South). We would like to be able to report
results on standard test sets but this constraint may prove to
be more of a hindrance than a help.
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