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ABSTRACT

This paper investigates the parameter tying strategies of mix-
tures of factor analyzers (MFA) and discriminative training of
MFA for speaker identification. The parameters of factor load-
ing matrices or diagonal matrices are shared in different mix-
tures of MFA. The minimum classification error (MCE) training
is applied to the MFA parameters to enhance the discrimination
abilities. The results of text-independent speaker identification
experiments show that MFA outperforms the conventional Gaus-
sian mixture models (GMMs) with diagonal or full covariance
matrices and achieve the best performance when sharing the diag-
onal matrices, resulting in a relative gain of 26% over the GMM
with diagonal covariance matrices. The recognition performance
is further improved by the MCE training with an additional 3%
error reduction.

1. INTRODUCTION

Gaussian mixture models (GMMs) are widely used for text-
independent speaker identification [1]. It is well known that
GMM with full covariance matrices needs sufficient training data
to guarantee the reliability of the estimated model parameters.
Furthermore, GMM with diagonal covariance matrices requires
a relatively large number of Gaussians to provide high recogni-
tion performance. In order to cope with the problem, mixtures
of factor analyzers (MFA) [2] have been applied to speech as
well as speaker recognition [3], [4]. MFA allows us to reduce
the degree of freedom of the covariance matrices maintaining
the recognition performance. Moreover, the reliability of the es-
timated parameters can be improved by sharing parameters in
different mixture components of MFA.

In this paper, the parameter tying strategies of MFA are in-
vestigated for speaker identification. Factor loading matrices or
diagonal matrices of MFA-based speaker models are shared in
different mixture components assuming that all the mixture com-
ponents in each MFA have the same number of factors. In this
paper, the following three kinds of MFA with different parameter
sharing structures are compared.

1) MFA without parameter sharing
2) MFA with shared diagonal matrices
3) MFA with shared factor loading matrices

In addition, minimum classification error (MCE) training is ap-
plied to MFA to improve the speaker recognition performance.
The effectiveness of the MCE training for the parameter shared
MFA is evaluated in a text-independent speaker identification
task.

This paper is organized as follows. Sections 2 and 3 describe
the general formulation of MFA and parameter tying strategies,
respectively. Section 4 presents the MCE training of MFA, and
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the experimental results are reported in Section 5. Finally, con-
clusions and future works are given in Section 6.

2. MIXTURES OF FACTOR ANALYZERS

2.1. Factor Analysis

Factor analysis (FA) is a statistical method for modeling the co-
variance structure of high dimensional data using a small number
of latent variables. In FA, a d-dimensional speech feature vector
x = (x1, x2, . . . , xd)T is modeled using a q-dimensional vec-
tor z = (z1, z2, . . . , zq)

T and a d-dimensional observation noise
n = (n1, n2, . . . , nd)

T :

x = W z + n, (1)

where W = (w1, w2, . . . , wq) , wi = (wi1, wi2, . . . , wid)
T

is a p × d matrix known as a factor loading matrix, and z is a
latent variable assumed to be distributed according to a Gaussian
density N (0, I), i.e., zero-mean independent normals with unit
variance. Each element of z is referred to as “factor”, The noise
vector n is distributed according to N (µ,Ψ), where µ denotes
a mean vector and Ψ is a diagonal matrix.

The likelihood of an observation x is given by

p(x | z) = N (µ + W z,Ψ) (2)

because when z is given, the product W z is a constant vector
added to the observation noise vector n. Therefore, distribution
for x is obtained by integrating out the latent variable z:

p(x) =

∫
p(x | z)p(z)dz

= N (µ, W W T + Ψ). (3)

2.2. Extension of FA to MFA

MFA is defined as mixtures of M factor analyzers. The likeli-
hood of T independent feature vectors X = (x1, x2, · · · , xT )
for the M -component MFA θ = {cm, µm, W m,Ψm | m =
1, . . . , M} is given by

p(X | θ) =

T∏
t=1

M∑
m=1

∫
pm(xt | z)pm(z)cmdz, (4)

where cm denotes the weight of the m-th mixture component.
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3. TYING STRATEGIES

Covariance matrices Σm of MFA consist of W m and Ψm. In
this section, we present the various tying strategies of these pa-
rameters in MFA. We assume that all the mixture components
have the same number of factors, and compare the following
three kinds of MFA with different parameter sharing structures.
1) Generic MFA: MFA without parameter sharing, i.e., stan-

dard MFA.
2) Ψ-shared MFA: MFA with shared diagonal covariance ma-

trices, i.e., Ψ1 = Ψ2 = · · · = Ψ, where n is assumed to
be a sensor noise.

3) W -shared MFA: MFA with shared factor loading matrices,
i.e., W 1 = W 2 = · · · = W , where the weights of each
factor in different mixtures are the same.

The maximum likelihood (ML) solution better suits the linear
Gaussian model framework since the expectation maximization
(EM) algorithm can be used. The EM steps for the MFA param-
eters θ are summarized as follows.

3.1. E-step

The E-step calculates the expectation of latent vector z and the
posterior of the m-th mixture component:

〈ztm〉 = E[z|xt, m] = βm(xt − µm), (5)

〈zztm〉 = E[zzT |xt, m]

= I − βmW m + 〈ztm〉〈ztm〉T , (6)

htm =
cmN (xt | µm,Σm)∑
m cmN (xt | µm,Σm)

, (7)

where βm = W T
mΣ−1

m and Σm = W mW T
m + Ψm.

3.2. M-step

The M-step is also very straightforward. The new model param-
eters µ′, W ′, Ψ′, and c′m for the three kinds of MFA mentioned
above can be obtained by the following re-estimation formulae.

1) Generic MFA

The re-estimation formulae require some manipulation to obtain
the new MFA parameters using the following convenient matrix
operations.

W̃ m = (W m µm) (8)

z̃tm =

(
z
1

)
(9)

The re-estimates of W̃
′
m and Ψm are obtained by

W̃
′
m =

(∑
t

htmxt〈z̃tm〉T
)

·
(∑

l

hlm〈z̃z̃lm〉
)−1

, (10)

Ψ′
m =

1∑
t htm

diag

{∑
t

htm

(
xt − W̃

′
m〈z̃tm〉

)
xT

t

}
,

(11)

where

〈z̃tm〉 =

( 〈ztm〉
1

)
, (12)

〈z̃z̃tm〉 =

( 〈zztm〉 〈ztm〉
〈ztm〉 1

)
, (13)

and diag(·) denotes setting the elements outside the main diag-
onal to zeros. The mixture weight cm is re-estimated as follows.

c′m =
1

T

T∑
t=1

htm (14)

2) Ψ-shared MFA

The re-estimation formulae for Ψ-shared MFA are the same as
those for generic MFA except for the diagonal covariance matrix:

Ψ′ =
1

T
diag

{∑
t,m

htm

(
xt − W̃

′
m〈z̃tm〉

)
xT

t

}
. (15)

3) W -shared MFA

The new model parameters of W -shared MFA is re-estimated
as follows. The new factor loading matrix W ′ is given by

W ′
(k) =

(∑
t,m

htmΨ−1
m(k)(xt − µm)(k)〈ztm〉T

)

·
(∑

t,m

htmΨ−1
m(k)〈zztm〉

)−1

(16)

where W (k) is k-th row vector in the factor loading matrix W .
In the followings, the individual component parameters µ′

m and
Ψ′

m can be re-estimated:

µ′
m =

∑
t htm(xt − W ′〈ztm〉)∑

t htm
, (17)

Ψ′
m =

1∑
t htm

diag
∑

t

{
htm(xt − µ′

m)(xt − µ′
m)T

−htmW ′
(
2〈ztm〉(xt − µ′

m)T − 〈zztm〉W ′T
)}

.

(18)

4. MCE TRAINING FOR MFA SPEAKER MODEL

To enhance the discrimination abilities of MFA-based speaker
models, MCE training based on the generalized probabilistic de-
scent (GPD) method [5] is applied to the parameters of MFA [3].

4.1. Definition of Loss Function

For the MCE training, the misclassification measure of training
data X = (x1, x2, · · · , xT ) for speaker s is defined as

ds(X ;Θ) = −gs(X ;Θ) + max
y �=s

gy(X ;Θ), (19)

where Θ = {θ1, θ2, . . . , θS} denotes the speaker model param-
eter set of MFA, and gs( · ; · ) is defined by the log likelihood
of X for speaker model θs. Equation (19) is the approximation
of the log likelihood ratio between the competing models and
the correct one. The loss function is defined as a differentiable
sigmoid function approximating the 0-1 step loss function:

ls(X ; θ) =
(
1 + exp(−γ · ds)

)−1
, (20)

where γ denotes the gradient of the sigmoid function. The goal
of the discriminative training is to minimize the loss function
based on the probabilistic descent method.
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4.2. Parameter Adjustment of MFA

During the parameter adaptation in the MCE training, the con-
straints of the MFA parameters, e.g., cm > 0, should be sat-
isfied. Hence, the MFA parameter set Θ is transformed into a
new model parameter set Θ̃.

Θ̃ = {θ̃1, θ̃2, . . . , θ̃S}, (21)

θ̃ = {c̃m, µ̃m, W m, Ψ̃m | m = 1, 2, . . . , M}, (22)

where c̃m = log cm, µ̃mi = µmi
Σmii

, Ψ̃mii = log Ψmii. Θ̃ is
updated at each iteration r as

Θ̃(r + 1) = Θ̃(r) − εr∇ls(X ; θ̃), (23)

where εr is a monotonically decreasing learning step size at the
r-th iteration. In this paper, Θ̃ is sequentially adjusted every time
a training sample X is given (i.e., sample-by-sample mode).

The gradient of (23) is obtained as follows.

∇θ̃y
ls(X ; θ̃) =

∂ls
∂ds

∂ds

∂gy
· ∇θ̃y

gy(X ; θ̃), (24)

where ∂ls
∂ds

, ∂ds
∂gy

, ∇θ̃y
gy(X ; θ̃) are given by

∂ls
∂ds

= γls(1 − ls),
∂ds

∂gy
=

{ −1, y = s
1, y �= s

, (25)

∇θ̃y
gy(X ; θ̃) =

1

T

T∑
t=1

1

by(xt)
∇θ̃y

by(xt). (26)

For the three kinds of MFA, the gradient of by(xt) with respect
to each element in θ̃y is obtained by the following formulae,
where the subscript y is dropped for the simplicity of notation.

1) generic MFA

For the generic MFA, the gradients are obtained as follows.

∂b(xt)

∂c̃m
= fm,

∂b(xt)

∂µ̃mi
= fmδmiΣmii, (27)

∂b(xt)

∂Wmij
= −fm

{
(Σ−1

m W m)ij − δmi[δ
T
mW m]j

}
, (28)

∂b(xt)

∂Ψ̃mii

= −1

2
fm

{
Σ−1

mii − δ2
mi

}
Ψmii, (29)

where fm = cmN (xt | µm, Σm)，δm = Σ−1
m (xt −µm), and

[·]i denotes the i-th vector element.

2) Ψ-shared MFA

In the case of Ψ-shared MFA, the gradients with respect to
mixture weights, mean vectors and factor loading matrices are
obtained by follows: (27) and (28), respectively, and only (29)
is changed as

∂b(xt)

∂Ψ̃ii

=
M∑

m=1

∂b(xt)

∂Ψ̃mii

. (30)

3) W -shared MFA

The gradients in (27) and (29) apply to the W -shared MFA case,
and (28) is changed as follows.

∂b(xt)

∂Wij
=

M∑
m=1

∂b(xt)

∂Wmij
(31)

5. EXPERIMENTAL EVALUATION

5.1. Database and Experimental Conditions

A text-independent speaker identification experiment was con-
ducted for 80 speakers (40 males and 40 females) in the ATR
Japanese speech database. 216 words were used for training
each speaker model, and 520 words were used for testing. The
number of tests was 41600 in total. The speech data was down-
sampled from 20kHz to 10kHz, windowed at a 10-ms frame
rate using a 25-ms Blackman window, and parameterized into
12 mel-cepstral coefficients excluding zero-th coefficients with a
mel-cepstral analysis technique.

GMM parameters were initialized using an LBG codebook.
Mixture weights and mean vectors of MFA were also initial-
ized using the LBG codebook, and factor loading matrices were
initialized with random values considering full covariance. Diag-
onal covariance matrices were initialized using diagonal elements
of full covariance matrices Σ [2]. The number of mixture com-
ponents was changed from 4 to 64, and the number of factors
was changed from 2 to 10.

5.2. Results

Figures 1–3 compare the identification error rates between the
three kinds of MFA and the conventional GMMs with full or
diagonal covariance matrices (full-GMM and diag-GMM). All
speaker models in Figs.1–3 were trained with 216 words based
on ML-estimation. Figure 1 compares the results of generic MFA
with the conventional GMMs, where the number of factors q is
changed as 2, 4, 6, 8, and 10. The horizontal axis corresponds to
the number of model parameters in a logarithmic scale. Generic
MFA show better performance with a smaller number of factors.
However, the error rate of generic MFA with a larger number of
factors is close to that of full-GMM, because the model structure
of generic MFA with q = 12 is almost the same as the full-
GMM. Figure 2 shows the results of Ψ-shared MFA. Ψ-shared
MFA achieved a significant improvement over the conventional
GMMs with larger number of mixtures. In the case of 64-mixture
models, error reductions of 19% (q = 2) and 26% (q = 6)
over diag-GMM were obtained. Figure 3 shows the results of
W -shared MFA. The performance of W -shared MFA is almost
equivalent to that of diag-GMM, because the model structure of
W -shared MFA is similar to that of diag-GMM, and has the
lowest flexibility among the three kinds of sharing structures.

Figure 4 shows the results of the three kinds of MFA with
the number of factors q = 2 and diag-GMM, where the amount
of training data was changed as 27, 54, and 216 words. We can
see that the MFA-based speaker models show relatively high per-
formance with such a small number of factors, and all the MFA-
based speaker models outperform the conventional GMM with
any amount of training data. Among the three kinds of MFA,
Ψ-shared MFA achieves the best performance and a significant
difference is found with smaller amounts of training data.

Finally, MCE training is applied to the MFA-based speaker
models. Figure 5 compares the performance of Ψ-shared MFA
with six factors before and after the MCE training. We can see
that the performance is further improved by the MCE training
and the 2.73% error rate was reduced to 2.65% with a 3% error
reduction.

6. CONCLUSIONS

This paper has investigated the parameter tying strategies of MFA
for speaker identification and MCE training has been applied to
the parameter shared MFA. Sharing diagonal covariance matrices
provided the best performance leading to a relative gain of 26%
over the GMM with diagonal covariance matrices. The MCE
training has further improved the recognition performance.

Our future works include the application of other variations
of MFA to speaker identification [6] and automatic determination
of the optimal number of mixture components and factors using
the variational Bayesian approach [7].
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Fig. 1. Comparison between generic MFA and conventional
GMMs with diagonal or full covariance matrices.
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Fig. 2. Comparison between Ψ-shared MFA and conventional
GMMs with diagonal or full covariance matrices.
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Fig. 3. Comparison between W -shared MFA and conventional
GMMs with diagonal or full covariance matrices.
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