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ABSTRACT

In the past, several approaches have been proposed for
voice conversion in TTS systems. Mostly, conversion is
done by modification of the spectral properties and pitch
to match a certain target voice. This conversion causes
distortions that deteriorate the quality of the synthesized
speech. In this paper we investigate a very simple and
straightforward method for voice conversion. It generates
a new voice from the source speaker instead of generating
a certain target speaker’s voice. For application in TTS
systems it is often sufficient to synthesize new voices that
sound sufficiently different to be distinguishable from
each other. This is done by applying a spectral warping
technique that is commonly used for speaker
normalization in speech recognition systems called vocal
tract length normalization (VTLN). Due to the low
requirements of resources this method is especially suited
for embedded systems.

1. INTRODUCTION

Voice conversion is used in TTS to adapt the synthesized
speech to a certain target speaker. This offers the
possibility for personalized speech synthesis, where the
synthesizer is able to speak with any desired voice.
Conversion is mostly done by modification the spectral
properties and pitch [5]. The signal processing necessary
to realize the spectral adaptation causes distortions that
lead to a deterioration of the overall quality. In this paper
we investigate a method for voice conversion that
generates a new voice from the source speaker while
introducing as few distortions as possible. In contrast to
the mentioned approaches it does not try to produce the
voice of a given target speaker. The conversion is done by
applying a spectral warping technique that is commonly
used for speaker normalization in speech recognition
systems called vocal tract length normalization (VTLN)
[15].

The motivation for this work has two aspects. Firstly,
it is motivated by our work on an unified approach for
speech synthesis and recognition (UASR) [1]. The goal of

this approach is to design a system that uses the same
databases and algorithms for both, speech synthesis and
recognition. It is straightforward thinking to reverse
normalization techniques used in the recognition branch
by de-normalization in the synthesis part. The
combination of normalization and de-normalization
solves an ostensible conflict in integrating speech
synthesis and recognition: recognizers shall be speaker
independent, where speech synthesizers shall speak with
a voice having certain characteristics. In our system, the
acoustic models describe the average voice derived from
speaker normalized training data. In the synthesis step an
arbitrary voice can be synthesized from average voice by
applying de-normalization techniques.

The second motivation for this work is the generation
of new voices for our concatenative TTS system Dress
[4]. The design and production of new signal databases is
an expensive and time consuming process. Therefore we
were looking for a way to build new voices from existing
databases. For TTS systems with a small footprint in
embedded environments this method is especially
interesting, because the conversion could be moved
entirely in the synthesis stage. By applying this
technique, different voices can be synthesized using a
single speaker database. As we will show in this paper,
the quality of the signal is not affected by the additional
processing.

In the following we will describe the vocal tract length
normalization method we are using in the recognition
part, explain how this normalization is reversed for
speech synthesis and will discuss first experimental
result.

2. VTLN IN SPEECH RECOGNITION

The use of VTLN in speech recognition has been
widely investigated ([3][6][7][10][15]). In this section, we
will briefly describe the concept and how we use VTLN
in our own system. The variance of the vocal tract length
of speakers is, among others, one major reason for the
inter-speaker variability. This variation leads to different
locations of the formant peaks for the same utterance
spoken by different speakers. Longer vocal tracts result in
a compression of the frequency axis, where shorter vocal
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Figure 1: Bilinear warping function for different values
of the warping factor α

tracts stretch the formant patterns. To build speech
recognizers as robust as possible, a normalization of
feature data is applied to eliminate the VTL variation.
This normalization is done by warping the signal in the
frequency domain to match the acoustic models of the
recognizer, hence to move the formant positions in
direction of the average speaker. There have been several
methods proposed how to estimate the warping factor and
what kind of warping functions can be applied. In our
experiments we have used the bilinear warping function
ϕα(ω):
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Where α is the speaker-specific warping factor. A factor
α>1.0 results in compression of the spectrum, whereas
α<1.0 corresponds to stretching the spectrum (figure 1).
The warping factors for the speakers in our database were
estimated by line search. For every speaker a factor α was
selected in a range of α - δ and α + δ, where the phoneme
recognition rate was maximal. The obtained set of factors
was used to train a new set of acoustic models. The search
for the best α and the following retraining was repeated
until the change of factors between two iterations fell
below a certain threshold.

3. REVERSE VTLN IN SPEECH SYNTHESIS

VTL de-normalization warps the signal from average
voice back to a voice having definite male or female
characteristics. As mentioned above, this is useful for
parametric speech synthesizers ([2][12][13]) which model
the speech signal using statistic models trained using data
from different speakers. These models represent the

average voice and there is some processing necessary to
synthesize a voice having certain characteristics from
average models. Another approach that has been
proposed is to adapt the acoustic models to the target
speaker [11]. In contrast, the reverse VTLN leaves the
acoustic models unchanged, but modifies the extracted
parameters during synthesis. The combination of both
approaches, speaker normalization and speaker
adaptation, is advantageous in speech recognition [16]
and could improve the quality of parametric TTS systems
as well.

In our system we use cepstral features and a synthesis
filter that reconstructs the speech signal from cepstral
coefficients. The input signal is segmented (length 24ms,
continuation rate 10ms) and windowed using blackman
window. The real cepstrum is computed as:

( ){ }( ){ }ln1 nsFFcn
−= (2)

where F denotes the N points discrete Fourier series, s(n)
the windows speech frame and cn are the N cepstral
coefficients. To recover the speech signal out of the
coefficients we use a digital filter. Since the input signal
for the filter is an impulse sequence for voiced segments
and noise for unvoiced segments, the transfer function of
such a filter is given by:

( ){ })( nsFH =ω (3)

From (2) follows

{ } ( ){ }( )ln nsFcF n = (4)

{ } ( )ωHe ncF = (5)

where F{cn} is the transfer function of the digital filter
used to approximate the absolute value of the natural
logarithm of the speech frame’s spectrum. The
exponential function is approximated using Páde
approximation. The resulting synthesis filter is a
composite filter consisting of a FIR filter that realizes the
transfer function and an IIR filter which approximates the
exponential function [14].

4. DATABASE

For our experiments we used the German PhonDAT II
database [9]. It consists 200 sentences read by 16
speakers. The 3200 signal files were recorded in high
quality 16-bit, 16 kHz. 6 out of 16 speakers were female;
the remaining 10 speakers were male. We extracted the
pitch information for every file in database using a
wavelet-based pitch tracker. The pitch information
includes the voiced/unvoiced information. For every
speaker in the database we have determined the speaker-
specific warping factor α using the described line search.
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Figure 2: F0/α plot for the speakers from the German
PhonDAT II database

5. EXPERIMENTS

To evaluate suitability of reverse VTLN for speech
synthesis we have conducted two re-synthesis
experiments. Re-synthesis allows an objective judgment
of the quality loss in reconstructed signal by avoiding the
additional processing stages in the TTS system. The first
goal was to answer the question, if additional signal
processing introduced by warping the spectra affects the
quality of the synthesized signal. Therefore we performed
a mean opinion score (MOS) test using samples of
recorded speech, re-synthesized speech and warped
speech. The second objective was to find out, if the
warped signals have significantly different characteristics
to be distinguishable from the original speaker.

The utterances were chosen from the database by
randomly selecting 5 sentences from each of eight
different speakers (4 male and 4 female). One sample per
speaker remained unchanged, one sample was re-
synthesized using cepstral synthesis and 3 samples were
warped to produce different target voices according to
table 1.

Speaker Original W 1 W 2 W 3
AWE Female

F0=195
α=0.98

Female
F0=240
α=1.05

Male
F0=140
α=0.95

Male
F0=120
α=0.9

CHK Male
F0=138
α=1.015

Male
F0=120
α=0.95

Female
F0=180
α=1.05

Female
F0=220
α=1.1

CSC Male
F0=144
α=0.99

Male
F0=120
α=0.95

Female
F0=180
α=1.05

Female
F0=220
α=1.1

KMA Female
F0=235
α=0.975

Female
F0=240
α=1.05

Male
F0=140
α=0.95

Male
F0=120
α=0.9

MKN Female
F0=213
α=0.975

Female
F0=240
α=1.05

Male
F0=140
α=0.95

Male
F0=120
α=0.9

RTD Female
F0=229
α=0.975

Female
F0=240
α=1.05

Male
F0=140
α=0.95

Male
F0=120
α=0.9

SAT Male
F0=154
α=1.015

Male
F0=120
α=0.95

Female
F0=180
α=1.05

Female
F0=220
α=1.1

TPO Male
F0=133
α=1.025

Male
F0=120
α=0.95

Female
F0=180
α=1.05

Female
F0=220
α=1.1

Table 1: Experimental settings for warped samples

The warping factors listed in column 2 in table 1 are the
factors estimated using line search (see section 2). They
describe the amount of warping necessary to approximate
the source voice to the average voice. In the synthesis
experiments the warping was performed in the opposite
direction. In this case a warping factor less one means
generation of a male voice characteristic, a warping factor
greater one stands for generation of female voice
characteristics, respectively. The excitation signal for re-
synthesis was generated by re-sampling of the original
pitch to match the target fundamental frequency.
12 subjects participated in the listening tests. In the MOS
test they were asked to rate the presented speech samples
on a scale between 1 and 5. Figure 3 shows that the
speech quality of the re-synthesized signal is rated about
1.5 points below the original signal.
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Figure 3: MOS rating of natural speech, re-synthesized
speech samples and warped speech

A possible explanation for this low rating is that the test
did not include samples generated by a TTS system. The
interesting and important fact of this test is that the
frequency warping did not cause additionally distortion.
In the second test 16 pairs of speech samples were
presented. The listeners were asked to decide whether the
two sentences were uttered by the same speaker or not.
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Figure 4: Listeners were asked to decide whether two
sentences were spoken by the same speaker or not.

The samples included natural speech, re-synthesized
speech and warped speech samples. The new voices
generated using reverse VTLN were hardly recognized
from the source voices by the listeners (figure 4).
Surprisingly, even the comparison between natural
speech and re-synthesized signal did not yield 100%.

6. CONCLUSION

The reverse VTLN can be used in speech synthesis to
generate different voices from a single voice, either
represented by a unit database of concatenative
synthesizers or by acoustic models of a parametric TTS
system. The listening tests showed, that the quality is not
affected by the additional processing and that the method
is able to produce distinguishable voices from a single
speaker. The low computational requirement qualifies the
method especially for application in embedded systems.
In our unified system for speech recognition and synthesis
the approach enables us to synthesize speech from
average voice models having certain characteristics.
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