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ABSTRACT

This paper proposes new and simple indicators of
cyclostationarity for the characterization of stochastic
processes whose statistics are periodically varying with
respect to some generic variables. Indicators of
cyclostationarity from first to fourth order are introduced
and their statistical properties are derived. In order to
illustrate the use of these indicators, an application to the
diagnosis of spalling in a gearbox is described. Results
demonstrate their effectiveness for discriminating between
different cyclostationary states.

1. STATEMENT OF THE PROBLEM

In signal processing, most of the established methods often
rest on fundamental assumptions of stationarity and
ergodicity of the involved processes. However, this
excludes many real-life non stationary signals. More
particularly, there is a subclass of non stationary signals
called cyclostationary signals. These signals are
characterized by periodic variations of their statistical
parameters. The estimation theory of periodically
correlated processes, i.e. second order cyclostationary, was
first introduced in [1]. For higher orders, the general
theory of cyclic statistics has been developed in both the
stochastic and fraction of time probability frameworks
[2],[3] and has found many applications in
communications. Surprisingly, very few applications have
been reported in related areas such as in mechanical
engineering until recently when it was recognized that
cyclostationary processes fit the properties of rotating
machinery [4]. Some precursory works [4],[5] have
recognized that cyclostationarity can characterize faults in
mechanical systems that would produce repetitive non-
linearities and non-stationarities. A relevant  statistical
parameter for studying such properties is the nth-order
cyclic polyspectrum [2],[3]. However, it is not conceivable
to estimate higher order polyspectra ( 2>n ) in the case of

on-line monitoring because of the high cost of calculation
they involve. In order to overcome this problem, concise
and global indicators that measure the cyclostationarity
from order 1 to 4 are proposed in this paper. The idea is
based on the precursory works of [7] and [8].

The paper is organized as follows. After presenting
the basic principles of cyclostationarity in section 2, the
theory and the statistical properties of the indicators are
proposed in section 3. To illustrate these methods, an
application to industrial vibration signals is described.
These signals were recorded on a gearbox. Results are
presented and discussed in section 4. Conclusions are
drawn in section 5.

2. MOMENTS OR CUMULANTS TO DEFINE
INDICATORS?

A process )(tx  is said to be nth-order cyclostationary
with period T if its nth-order moments exist and are
periodic with period T . In order to define indicators of
cyclostationarity, there are two possible methods based
either on the use of moments or cumulants. The first
approach uses the periodicity of the nth-order moment,
while the second uses the periodicity of the nth order
cumulant.

The use of nth-order cumulants is more advantageous than
nth-order moments for the following reason: it is often the
case that an nth-order moment is impure in the sense that it
is partly or wholly made up of products of lower order
moments. To purify nth-order moments, all the impure
terms induced from lower orders must be extracted. This is
exactly what is achieved by using cumulants rather than
moments. For 3 and 2=n , the purification is easy
because extracting the first–order moment is enough to
obtain the cumulants. For higher orders, Leonov’s type
formulae must be used [2].
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3. PROPOSAL OF INDICATORS OF
CYCLOSTATIONARITY

3.1 General theory

Consider the first moment, second, third and fourth order
cumulants of signal )(tx  respectively defined by:

 ),,( ),( 21 τtCtM xx ),,( 213x ττtC and ),,,( 3214x τττtC . The
cyclic moment and the cyclic cumulants at zero lags are
used here to measure the cyclostationarity because they
summarize all the spectral information of a cyclostationary
signal according to the projections:

∫= νναα dSc xx )()0( 22

∫= 212133 ),()0,0( νννναα ddSc xx             (1)

∫= 32132144 ),,()0,0,0( νννννναα dddSc xx

where )(
−
τα

nxc represents the Fourier coefficients of

( , )nxC t τ
−

with respect to t  and )(
−
να

nxS is the thn order

cyclic polyspectrum of )(tx , i.e. the Fourier transform of

)(
−
τα

nxc  with respect to the lag variables
−
τ .

The problem of defining a measure of second-order
cyclostationarity processes was first addressed in [2] and
[7]. In [7], W.A.Gardner proposed a degree of
cyclostationarity for each cyclic frequency α defined by:

∫∫= τττταα dcdcDCS xx
20

2
2

2 )()(                (2)

In this paper, we propose new simplified ( 0=τ )
indicators of cyclostationarity from order one to four
defined as follows:
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where ;4..1=i 1ix xP Mα α=  for i=1 and

2 3 4(0), (0,0), (0,0,0)x x xc c cα α α respectively for i=2, 3 and 4.

These indicators are motivated by the fact that:

1. They are monotonic and increasing functions of the
degree of nth-order cyclostationarity.

2. They are theoretically zero if the process is stationary.
3. They are normalized by the energy of the signal to

give a dimensionless ratio.

4. They generalize the well-known standardized
cumulants, i.e. the classical RMS value, the skewness
and the kurtosis by giving them a ‘cyclic’ counterpart.

3.2 Estimation techniques

Consistent estimators, for a discrete signal )(nx , are
defined as below [2]:
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where )(ˆ)()( 1 nMnxnx xc −= is the signal obtained after

extracting the synchronous average )(ˆ
1 nM x .

3.3. Statistical properties of indicators

The objective of this paragraph is to evaluate the statistical
properties (bias and variance) of the proposed indicators in
order to be able to establish thresholds on their estimated
values. However, the properties of n

xI 4 will not be
investigated in this paper. This is due to the complexity of
the relation that relates 4̂

n
xI to the cyclic sample moments.

Therefore, the exact computation of { }4̂
n
xE I and

{ }4̂var n
xI leads to intricate formula which are of no

practical value. So, it was decided to estimate these latter
quantities by using the bootstrap technique. This statistical
technique involves generating subsets of the data on the
basis of random sampling with replacements as the data
are sampled. The positive motive for bootstrap resampling
is the general relative ease of devising an appropriate
resampling when the experimental design is complex.
Since we are testing for cyclostationarity, all the
calculations for order 1 to 3 are made under the null
hypothesis 0H which supposes that the signal is
stationary.

•  Bias of the indicators
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This approximation is valid if

{ } 1/ 2
0 0
2 2ˆ(0) var (0)x xc c 

 
�� which is asymptotically true.

After some algebra, one can then obtain that:
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where 2 ixS is the moment spectrum of the signal [ ]( ) ix t ,

1,2,3i = .

•  Variance of the indicators
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Assuming that the estimates P̂ are asymptotically gaussian
and using [8], one can obtain :
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Finally, the expression of the variance is found as:
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3.5 Application to diagnostics

The objective of this paragraph is to propose an
application to the diagnostic of any system composed of
two sets of different cyclic frequency 1ϖ and 2ϖ . The
protocol is resumed in table 1:

Set 1 Set 2
CS1 )( 2111 ϖϖϖ ∩−n

xI )( 2121 ϖϖϖ ∩−n
xI

CS2 )( 2112 ϖϖϖ ∩−n
xI )( 2122 ϖϖϖ ∩−n

xI
CS3 )( 2113 ϖϖϖ ∩−n

xI )( 2123 ϖϖϖ ∩−n
xI

CS4 )( 2114 ϖϖϖ ∩−n
xI )( 2124 ϖϖϖ ∩−n

xI

Tab.1: Monitoring protocol

where CSi characterizes the ith-order cyclostationarity. To
follow the evolution of each set of cyclic frequencies, one
has to be careful to compute the indicators of
cyclostationarity only for the specific set without including
the common cyclic frequencies between the two sets. The
evolution of one of these indicators corresponding to a
specific set is an effective way of detecting any abnormal
change in the system.

For example, consider { }cTk 11 /=ϖ  and
{ }cTk 22 /=ϖ , ,...,k K K= −  two sets of harmonically

related cyclic frequencies with K the number of
harmonics in the frequency band of interest and icT  the
periods of cyclostationarity. Further, suppose that

{ }cTkN 1121 /=∩ϖϖ . Then, expressions (6) and (10)
1 3i = … are given by:
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where 1M is the number of samples corresponding to cT1 .

4. APPLICATION TO THE DIAGNOSIS OF A
GEARBOX.

The system examined is a power circulating gear-testing
machine. It is composed of two single-stage gear units
mounted back to back. Both units contain a pair of spur
gears. The first pair has 20 teeth each. Data was measured
with an accelerometer at a sampling rate of 80 kHz. 256
states were measured during the experiments, and angular
re-sampled by using top reference and interpolation
techniques. Inspection of the spectrum of a vibration
signal showed that it was essentially discrete below 16
kHz and continuous above 16 kHz.

Fig.1 presents the four indicators n
ixI  when all signals

are low-pass filtered (the cut off  frequency is equal to 16
kHz). The indicator of CS1 clearly increases at the end of
the campaign, this being a classical result similar to those
obtained in [4]. For the other three indicators, a small
increase in cyclostationarity can be observed from the state
232 onward which corresponds to the last day of
acquisition. It was also observed that the amplitudes of the
indicators increase with order. Fig.2 shows the evolution
of the four indicators when the signals are high-pass
filtered. As can be predicted from inspection of the
spectrum, the amplitude of the synchronous mean
decreases in comparison with Fig.1. In contrast,
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x

n
x

n
x III 432  and  , increase in a spectacular way. This

result is very net on the 174th state, which corresponds to
the 8th day, i.e. 3 days before the end of measurement.
Furthermore, the cyclostationarity is visible at all orders.
To evaluate the properties of these indicators, the bias and
the variance of these indicators have been computed using
equations (6) and (10). The null hypothesis 0H
(stationarity) was rejected with a level of significance of
0.13%.

Fig.1: Evolution of cyclostationary indicators with different
states of the gearbox system when all signals are low pass
filtered

Fig.2: Evolution of cyclostationary indicators with different
states of the gearbox system when all signals are high pass
filtered

5. CONCLUSION

This paper deals with some new indicators of
cyclostationarity. The main idea in the development of
these indicators was to exploit cyclostationarity at
different orders without using nth-order polyspectra which
are inappropriate for real-time computation. The proposed
indicators are expressed in terms of cumulants and are
normalized variance. They generalize the degrees of
cyclostationarity introduced by [7]. Their statistical
properties are also briefly investigated in this paper and
may be useful for testing cyclostationarity order by order.
One application detailed in this paper is for diagnostics.
Indeed, an industrial case is described where the proposed
indicators are used in the monitoring of a gearbox. The
obtained results are very promising and motivate further
research in this area.

6. REFERENCES

[1] H.Hurd, “Non parametric time series analysis for periodically
correlated processes. IEEE  transactions on Information Theory,
vol. 35(1), pp. 350-359,1992.

[2] W.A. Gardner, “The Cumulant Theory of Cyclostationary
Time-Series, Part I : Foundation”, IEEE Transaction on Signal
Processing, vol. 42, pp.3387-3409, 1994.

[3] G. Giannakis, and A.V. Dandawate, “Nonparametric
polyspectral Estimators for kth-order (Almost) Cyclostationary
Processes”, IEEE  transactions on Information Theory, vol.
40(1), pp. 67-84,1994.

[4] C. Capdessus, M. Sidahmed and J.L. Lacoume,
“Cyclostationary Processes : Application in Gear Faults Early
Diagnosis”, Mechanical Systems and Signal Processing, vol.
14(3) , pp. 371-385, 2000.

[5] A.Raad, J.Antoni and M.Sidahmed, “Third-order cyclic
characterization of vibration signals in rotating machinery”, XI
European Signal Processing Conference Eusipco, 3-5 September
2002.

[6] P.Prieur and G. D’urso, “Des indices de cyclostationarité
pour la surveillance des engrenages”, quinzième colloque Gretsi,
Juan les Pins, pp.1241-1244,1995, in French.

[7] G.D. Zivanovic and W.A.Gardner, “Degrees of
cyclostationarity and their application to signal detection and
estimation”, Signal processing, pp. 287-297,1991.

[8] A.V.Dandawate and G.B.Giannakis, “Statisticial Tests For
Presence Of Cyclostationarity”, IEEE Transactions On Signal
Processing, vol.42(9), pp.2355-2369, 1994

50 100 150 200 250
0

0.02

0.04

I 1xn

50 100 150 200 250
0

0.2

I 2xn

50 100 150 200 250
0

0.2

0.4

I 3xn

50 100 150 200 250
0

0.5

1

I 4xn

States

50 100 150 200 250
0

5
x 10-3

I 1xn

50 100 150 200 250
0

0.5

I 2xn

50 100 150 200 250
0

0.5

I 3xn

50 100 150 200 250
0

2

4

I 4xn

States

VI - 760

➡ ➠


