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ABSTRACT

A parameter estimation scheme based on the adaptive mod-
elling of the score function of M-estimators is presented. The
weights of basis functions are estimated from the data to match
the empirical distribution. The bases utilise rank based score func-
tions to remove dependence on scale from the basis selection pro-
cess. While determination of appropriate bases for a distribution is
shown to be possible, the robustness and adaptivity of the scheme
means good results may be achieved regardless.

1. INTRODUCTION

Consider the well known scenario where a parametric signal,st(θ),
is observed in additive i.i.d noise,xn,

yn = sn(θ) + xn, n = 1, . . . , N.

Estimation of the unknown parameter vectorθ is required in nu-
merous signal processing (and other) applications. Classical least
squares solutions have been well studied for the case of Gaussian
noise. Numerous non-Gaussian cases have also received attention
when a parametric model for the distribution is assumed. Some ex-
amples are theK-distribution used in radar, the generalised Gaus-
sian distribution or the various heavy tailed models [1], which have
been proposed for wireless and underwater communications.

Of course when an estimator is based on a specific model, any
model deviations may be problematic and require that the estima-
tor be robust to it. To this end one may use M-estimators [2, 3]
to implement sub-optimal estimators which are robust to changes
in distribution. M-estimators use a robust suboptimal score func-
tion instead of the optimal influence function (as determined by
the noise distribution).

In [4, 5] it was proposed that the score function be modelled as
a linear combination of basis functions, whose weights are adap-
tively estimated from the observations. Under suitable constraints
it was shown that this scheme resulted in improved small sam-
ple performance, with minimal large sample loss. However, for
appropriate choice of non-linear bases, an estimate of the scale
(variance) of the noise was required.

Here, a modification to this scheme is presented that uses rank
based score functions. Whereas the previous estimator required a
scale dependent nonlinearity, here this is replaced by a linear func-
tion and a scale independent rank based nonlinearity. The design
of such nonlinearities is discussed and brief simulation results pre-
sented.

2. SIGNAL MODEL

Consider the general signal in additive noise model,

yn = sn(θ) + xn n = 1, . . . , N

wherexn is i.i.d. noise and the signal,sn, is parameterised by
θ = (θ1, . . . , θP )T , (·)T denoting transposition. The aim is to
estimateθ fromN observationsyn. Given the noise density,f(x),
one obtains the ML solution as

θ̂ML = arg min
θ

N∑
n=1

− log f (yn − sn(θ))

Alternatively, the solution to theP coupled equations

N∑
n=1

ψ (yn − sn(θ))
dsn(θ)

dθ
= 0

can be found, whereψ(x) = −f ′(x)/f(x), f ′(x) = d
dx
f(x),

is the influence function off(x). It is clear that withouta priori
knowledge off(x) estimation ofθ cannot be optimal.

In an M-estimator [2]− log f(x) is replaced with a similarly
behaved function, chosen to confer robustness on the estimator un-
der deviations from a nominal density. Estimates forθ are ob-
tained by solving theP coupled equations

N∑
n=1

ϕ (yn − sn(θ))
dsn(θ)

dθ
= 0 .

In [4, 5],ϕ(x) was not set in advance but estimated from the obser-
vations. Here, againϕ(x) will be determined by the observations,
however under a different form to previous contributions.

3. ROBUST PARAMETER ESTIMATION UTILISING
RANK SCORE FUNCTIONS

Consider a linear model forϕ(x) [4, 5],

ϕ(x) =

K∑
k=1

akgk(x) = aT g(x) (1)

wherea = (a1, . . . , aK)T are weights and the functionsg(x) =

(g1(x), . . . , gK(x))T are the appropriately chosen basis functions.
Without loss of generality, the constraint

∑
k ak = 1 is imposed.

Then if it is possible to find appropriate weights such thatϕ(·)
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1. Initialisation Setj = 0. Obtain an initial estimate ofθ, θ̂0.

2. Determine the residuals
x̂n = yn − sn(θ̂j).

Rank the elements of{x1, . . . , xN} in ascending order. Denote the rank ofx̂n in {x1, . . . , xN} asrn. If rn = i, then
xn = x[i].

3. Estimate the score functionEstimate the weights by,

â =

(
N∑

n=1

x̂2
nh
(rn

N

)
hT
(rn

N

))−1( N∑
i=1

x̂[i+1]h( i+1
N

)− x̂[i−1]h( i−1
N

)

x[i+1] − x[i−1]

)
.

The score function is thenϕ(xn) = âT h
(

rn
N

)
xn.

4. Update the parameter estimateSolve,

N∑
n=1

ϕ(yn − sn(θ̂j))
dsn(θ̂j)

dθ
= 0

given the initial estimatêθj , assign the solution tôθj+1.

5. Check for convergenceIf ||θ̂j+1 − θ̂j || < ε stop, otherwise setj → j + 1 and go to step 2.

Table 1. Algorithm for M-estimation with rank based score function estimation.

approximates the unknownψ(·), the corresponding estimator will
be near optimal.

Given thatlimx→±∞ gk(x)f(x) = 0, one obtains the optimal
least squares solution to minimising the MSE betweenϕ(·) and
ψ(·) as

a = E
[
g(x)gT (x)

]−1

E
[
g′(x)

]
(2)

Now let gk(xn; x) = xnhk

(
rn
N

)
wherex = {x1, . . . , xN}

andrn is the rank ofxn in x. While “conventional” non-linear
score functions are scale dependent, i.e. scaling the observations
requires appropriate scaling of the score functions (inx) to main-
tain performance, rank score functions are intrinsically scale inde-
pendent [6].

If all the noise observations are scaled by a positive value, their
relativepositions, and hence their ranks, will not change. There-
fore, fora being a positive scalar,

gk(axn; ax) = axnhk

(rn

N

)
gk(axn) = agk(xn)

A scaling of the observations will only result in a linear scaling
of the rank based score function. The same cannot be said of a
general non-linear function.

Assuming that expectations under the unknown distribution
can be replaced by sample averages using the observations, the
matrix to be inverted in (2) becomes

N∑
n=1

g(x̂n)gT (x̂n) =

N∑
n=1

x̂nh
(rn

N

)
hT
(rn

N

)
x̂n

=

N∑
n=1

x̂2
nh
(rn

N

)
hT
(rn

N

)
.

The vectorE [g′(x)] can be approximated by

N∑
n=1

g′(xn) =

N∑
i=1

g′(x[i])

≈
N∑

i=1

g(x[i+1])− g(x[i−1])

x[i+1] − x[i−1]

=

N∑
i=1

x[i+1]h( i+1
N

)− x[i−1]h( i−1
N

)

x[i+1] − x[i−1]

wherex[i] is the i’th order statistic, i.e. thei’th largest element
of x, x[1] ≤ x[2] ≤ . . . ≤ x[N ]. (Note that, in practice, this
estimate of the rate of change ofg(x) may be smoother when using
larger “steps” aroundg(x[i]), i.e. using the gradient of the function
betweeng(x[i±δ]) whereδ > 1.)

The estimate of the score function, from (1), is then incorpo-
rated into an M-estimation algorithm. The resulting scheme it-
erates between three main steps, finding the residuals, estimating
the weights used in the score function and updating the parameter
estimates. The algorithm is summarised in Table 1.

4. RANK BASED SCORE FUNCTIONS

As with their non-rank counterparts, the choice of rank based score
functions should be made using available knowledge regarding the
unknown distribution. Having said that, rank based score functions
have been shown to exhibit greater robustness to deviations from
distributional assumptions [7]. See the discussion in Appendix A
regarding the relationship between the true noise distribution and
the chosen basis functions.

The following example finds the appropriate rank based score
function for Cauchy distributed noise. The pdf of the standard
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Fig. 1. Sample rank score basis functions.

Cauchy distribution isf(x) = 1
π(1+x2)

, thus

ψ(x) = −f
′(x)

f(x)
=

2x

1 + x2
.

To find the rank score function that is best forf(x), then setψ(x) =

xh
(

r
N

)
. SincelimN→∞

r(x)
N

= F (x), whereF ′(x) = f(x),
then

h(F (x)) =
2

1 + x2

h(u) =
2

1 + (F−1(u))2

=
2

1 + tan2(π(u− 1
2
))

= 1− cos(2πu) .

By contrast, and unsurprisingly, under the Gaussian case the
procedure is trivial

ψ(x) = x

h(F (x)) = 1

h(u) = 1

Of course the optimal score function under Gaussianity is a linear
function, thus any rank score function is “unnecessary”.

Generic bases using, for example, polynomials are easily im-
plemented, and have been used in the results that follow in this
paper. Plots of the bases are shown in Figure 1. Note that the sym-
metry of the basis functions is a consequence of the assumption of
symmetry off(x).

5. RESULTS

Brief simulation results are presented here to demonstrate the per-
formance of the described technique. The basis functions used
included the Cauchy and Gaussian influence functions and poly-
nomials up to order 3 (as described in section 4). Observation
sizes wereN = 200, 400, 600, 800 and 1000. The first exam-
ple concerned the simple task of estimating a DC level in noise,

200 400 600 800 1000
0.85

0.9

0.95

1

1.05

1.1

θ

N (observation length)

Score fn estimate
Initial estimate

Fig. 2. Spread of estimates of DC signal in Gaussian noise (dark
box – initial estimate, light box – score function estimate).
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Fig. 3. Spread of estimates of DC signal int2 noise (dark box –
initial estimate, light box – score function estimate).

yn = θ + xn. The initial estimate was taken to be the sample av-
erage. Box-whisker plots of the results are shown in Figure 2 for
Gaussian noise and Figure 3 fort2 noise. The boxes enclose the
interquartile range, i.e. they join the 25’th and 75’th percentiles
of the estimates found by repeated Monte Carlo simulation. Also
shown by a∗ or 4 are the 5’th (lower mark) and 95’th (upper
mark) percentiles. The true parameter value is shown by the dot-
ted line. As expected, under the Gaussian case, no advantage can
be gained, however, for a highly non-Gaussian case, significant
improvement is evident.

In the second example shown here, the frequency of a sinu-
soid in noise is estimated. Shown in Figure 4 is the spread of
frequency estimates when Laplacian (double exponential) noise
is added. The initial frequency estimate is taken as the peak of
the zero-padded periodogram. There appears to be a significant
improvement in the estimate obtained by the rank score function
based technique. This was achieved even without optimisation of
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Fig. 4. Spread of estimates of frequency of a sinusoid in Lapla-
cian noise (dark box – initial estimate, light box – score function
estimate).

the score function choice.
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7. CONCLUSIONS

A robust estimation scheme with adaptive estimation of the un-
known influence function using a linear combination of basis func-
tions has been presented. The scale invariance of rank based func-
tions removes a significant design consideration as compared to
a previous scheme. The choice of basis functions remains an im-
portant consideration in the implementation of the technique, how-
ever, as shown, finding bases suited to a particular class of distribu-
tions can be done. Preliminary work has begun on improved basis
selection using the findings in Appendix A as well as Akaike’s
Information Criterion and similar methods, to facilitate improved
performance.

A. NOISE DISTRIBUTION AND THE CHOICE OF BASES

The addition of an “inappropriate” choice of basis function should,
in theory, have no effect on the implemented influence function,
ϕ(x), since its weight can be set to 0. However, it is still worth-
while to investigate how the the implemented influence function is
affected by the choice of bases.

Consider a score function,gk(x), which is the influence func-
tion (i.e. the “optimal” score function) for a distribution with pdf
fk(x), then

gk(x) = − d

dx
log fk(x) (3)

and, consequently,

fk(x) ∝ e−Gk(x)

whereG′k(x) = gk(x).

Now consider a function,ϕ(x), that is the linear combination
of other basis functions, as in (1). It is now desired to find the dis-
tribution, f(x), for which this will be the optimal choice, i.e. the
distribution for whichϕ(x) is equal to the true influence function
ψ(x).

ϕ(x) =

K∑
k=1

akgk(x) = − d

dx
log f(x)

K∑
k=1

−akGk(x) ∝ log f(x)

K∏
k=1

[
e−Gk(x)

]ak

∝ f(x)

K∏
k=1

[fk(x)]ak ∝ f(x)

Hence it can be seen that if each basis functiongk(x) is the influ-
ence function for a particular distribution with pdffk(x), then the
score function formed by a linear combination of basis functions is
the influence function of a distribution whose pdf is the weighted
geometric mean of thefk(x) , k = 1, . . . ,K.

This relationship is of particular interest when considering the
rate of decay of the tails of distributions. Any non-zero weighting
given togk(x) corresponding to a bounded pdf,fk(x), will result
in a boundedf(x). Similarly, if all fk(x) pdfs have slow tail decay
rates,f(x) will also inherit this property.

In the above discussion, no form was imposed ongk(x) and,
hence, these results apply equally to rank based score functions as
they do to non-rank based equivalents.
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