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ABSTRACT 2. SIGNAL MODEL

A parameter estimation scheme based on the adaptive mod-Consider the general signal in additive noise model,
elling of the score function of M-estimators is presented. The
weights of basis functions are estimated from the data to match Yn = 5n(0) + Tn n=1,...,N
the empirical distribution. The bases utilise rank based score func-
tions to remove dependence on scale from the basis selection pro o ) o o
cess. While determination of appropriate bases for a distribution is - (61,....0p)", () dgnotlng t.ransposmo.n. The am s to
shown to be possible, the robustness and adaptivity of the schem&Stimate) from N observationg,. Given the noise density,(x),
means good results may be achieved regardless. one obtains the ML solution as

wherex,, is i.i.d. noise and the signal,,, is parameterised by

N
1. INTRODUCTION ML = Arg i n; og f (yn = 1(8))
Consider the well known scenario where a parametric sign@), Alternatively, the solution to thé’ coupled equations

is observed in additive i.i.d noise,,,

N
dsn(0)
Yn = 5n(0) +xn, n=1,...,N. ;w(y"_s"(e)) a0 °
Estimation of the unknown parameter vecgbis required in nu- can be found, wheré(z) = —f'(z)/f(z), f'(z) = L f(z),

merous signal processing (and other) applications. Classical leasis the influence function of (). It is clear that withous priori
squares solutions have been well studied for the case of Gaussiarnowledge off (z) estimation o cannot be optimal.
noise. Numerous non-Gaussian cases have also received attention |n an M-estimator [2]- log £ () is replaced with a similarly
when a parametric model for the distribution is assumed. Some ex-behaved function, chosen to confer robustness on the estimator un-
amples are thé&(-distribution used in radar, the generalised Gaus- der deviations from a nominal density. Estimates floare ob-
sian distribution or the various heavy tailed models [1], which have tained by solving theé® coupled equations
been proposed for wireless and underwater communications.

Of course when an estimator is based on a specific model, any N ds,(6)
model deviations may be problematic and require that the estima- Z ¢ (yn — 5n(0)) a0
tor be robust to it. To this end one may use M-estimators [2, 3] n=1

to implement sub-optimal estimators which are robust to changes), [4, 5], (2) was not setin advance but estimated from the obser-
in distribution. M-estimators use a robust suboptimal score func- \44ions. Here, agaip(z) will be determined by the observations,
tion instead of the optimal influence function (as determined by pawever under a different form to previous contributions.
the noise distribution).
In [4, 5] it was proposed that the score function be modelled as
a linear combination of basis functions, whose weights are adap-
tively estimated from the observations. Under suitable constraints
it was shown that this scheme resulted in improved small sam-
ple performance, with minimal large sample loss. However, for
appropriate choice of non-linear bases, an estimate of the scale K
(variance) of the noise was required. o(z) = Z arge(z) = a’g(x) (1)
Here, a modification to this scheme is presented that uses rank k=1
based score functions. Whereas the previous estimator required a
scale dependent nonlinearity, here this is replaced by a linear func-wherea = (a1,...,ax)" are weights and the functioggz) =
tion and a scale independent rank based nonlinearity. The design(g: (z), ..., gx (z))" are the appropriately chosen basis functions.
of such nonlinearities is discussed and brief simulation results pre-Without loss of generality, the constraipit, ax = 1 is imposed.
sented. Then if it is possible to find appropriate weights such thé&)

=0

3. ROBUST PARAMETER ESTIMATION UTILISING
RANK SCORE FUNCTIONS

Consider a linear model fas(z) [4, 5],
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2. Determine the residuals

Rank the elements dfx4, . .
Tn = {B[i].

. Estimate the score functionEstimate the weights by,

(S 0)

~2

Z Tnh
n=1 (

The score function is thep(z,) = a” h (%) zn.

. Update the parameter estimateSolve,

Tn
a = -

N

Tn

N

K3

Z @(yn — sn(

given the initial estimaté ;, assign the solution t8; ;.

1. Initialisation Setj = 0. Obtain an initial estimate af, 6.

Tn = Yn — Sn(éj)'
.,z } inascending order. Denote the rankiofin {z1, ..

3 () = Ei-1h(

i=1

8,))

. Check for convergencdf ||éj+1 - éjH < e stop, otherwise set— j + 1 and go to step 2.

., N} asry. If r, =1, then

)

i—1
N

Lli+1] — Lli-1]

dsn(0))

a0

Table 1. Algorithm for M-estimation with

approximates the unknowp(-), the corresponding estimator will
be near optimal.

Given thatlim, .+ gx(z) f(z) = 0, one obtains the optimal
least squares solution to minimising the MSE betwe#n and
Y() as

a=E[g()g" ()] Elg@) @

Now let g (zn; @) = znhi (52) wherew = {z1,...,on}
andr,, is the rank ofz,, in . While “conventional” non-linear

score functions are scale dependent, i.e. scaling the observations

requires appropriate scaling of the score functions:§ito main-
tain performance, rank score functions are intrinsically scale inde-
pendent [6].

If all the noise observations are scaled by a positive value, their
relative positions, and hence their ranks, will not change. There-
fore, fora being a positive scalar,

Tn
v)

gk (axn;ax) aTnhi <

agk (xn)

gr(axn)

A scaling of the observations will only result in a linear scaling

of the rank based score function. The same cannot be said of a

general non-linear function.

rank based score function estimation.

The vectorE [g’(z)] can be approximated by

N
Zgl(xn)

n=1 i=

1—1
N

zurh () — zi-1h(

Llit+1] = Lli-1]

)

wherez; is thed'th order statistic, i.e. thé'th largest element

of ¢, zy) < xpg < ... < ). (Note that, in practice, this
estimate of the rate of changeg(x) may be smoother when using
larger “steps” aroung(xy;)), i.e. using the gradient of the function
betweeng (z;+s)) Wheres > 1.)

The estimate of the score function, from (1), is then incorpo-
rated into an M-estimation algorithm. The resulting scheme it-
erates between three main steps, finding the residuals, estimating
the weights used in the score function and updating the parameter
estimates. The algorithm is summarised in Table 1.

4. RANK BASED SCORE FUNCTIONS

Assuming that expectations under the unknown distribution ag with their non-rank counterparts, the choice of rank based score
can be replaced by sample averages using the observations, thg,ctions should be made using available knowledge regarding the

matrix to be inverted in (2) becomes

N

> g(En)g” (@)

n=1

unknown distribution. Having said that, rank based score functions
have been shown to exhibit greater robustness to deviations from
distributional assumptions [7]. See the discussion in Appendix A
regarding the relationship between the true noise distribution and
the chosen basis functions.

The following example finds the appropriate rank based score
function for Cauchy distributed noise. The pdf of the standard
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Fig. 2. Spread of estimates of DC signal in Gaussian noise (dark

Fig. 1. Sample rank score basis functions. 2k | ' ) !
box — initial estimate, light box — score function estimate).

Cauchy distribution i (z) = —77—, thus 14
(e
. fl(l') _ 2¢ T . R
V(@) = flz) — 1+22 el
12 A B . b
To find the rank score function that is best fir), then set)(z) = T L N -
zh (L). Sincelimy—_oo "2 = F(z), whereF'(z) = f(x), ” e
then D D ID ID
.= |
2
WE@) = S
h(u) = % 08 &= s ,,*f————f%”’///* 1
L+ (F(w)
o 2 07 R i
T It tan(w(u— 1)) '
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1 — cos(2mu)

N (observation length)

By contrast, and unsurprisingly, under the Gaussian case the

procedure is trivial Fig. 3. Spread of estimates of DC signalifn noise (dark box —

initial estimate, light box — score function estimate).

P(x) = =
hF(z)) = 1
h(u) = 1

yn = 0 + x,,. The initial estimate was taken to be the sample av-
Of course the optimal score function under Gaussianity is a linear erage. Box-whisker plots of the results are shown in Figure 2 for
function, thus any rank score function is “unnecessary”. Gaussian noise and Figure 3 fornoise. The boxes enclose the

Generic bases using, for example, polynomials are easily im- interquartile range, i.e. they join the 25'th and 75'th percentiles
plemented, and have been used in the results that follow in thisof the estimates found by repeated Monte Carlo simulation. Also
paper. Plots of the bases are shown in Figure 1. Note that the symshown by ax or A are the 5'th (lower mark) and 95'th (upper
metry of the basis functions is a consequence of the assumption oimark) percentiles. The true parameter value is shown by the dot-
symmetry off (x). ted line. As expected, under the Gaussian case, no advantage can
be gained, however, for a highly non-Gaussian case, significant
improvement is evident.

In the second example shown here, the frequency of a sinu-
Brief simulation results are presented here to demonstrate the persoid in noise is estimated. Shown in Figure 4 is the spread of
formance of the described technique. The basis functions usedfrequency estimates when Laplacian (double exponential) noise
included the Cauchy and Gaussian influence functions and poly-is added. The initial frequency estimate is taken as the peak of
nomials up to order 3 (as described in section 4). Observationthe zero-padded periodogram. There appears to be a significant
sizes wereN = 200, 400, 600, 800 and 1000. The first exam- improvement in the estimate obtained by the rank score function
ple concerned the simple task of estimating a DC level in noise, based technique. This was achieved even without optimisation of

5. RESULTS
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Fig. 4. Spread of estimates of frequency of a sinusoid in Lapla-
cian noise (dark box — initial estimate, light box — score function
estimate).

the score function choice.
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7. CONCLUSIONS

A robust estimation scheme with adaptive estimation of the un-
known influence function using a linear combination of basis func-

Now consider a functionp(x), that is the linear combination
of other basis functions, as in (1). It is now desired to find the dis-
tribution, f(x), for which this will be the optimal choice, i.e. the
distribution for whichp(z) is equal to the true influence function

P().

K d
p(z) = Zakgk(l’) = —%Ing(@")
k=1
Z —apGr(z) o log f(x)
11 [efckm]“k x  f(x)

Hence it can be seen that if each basis functipfx) is the influ-
ence function for a particular distribution with pdi(z), then the
score function formed by a linear combination of basis functions is
the influence function of a distribution whose pdf is the weighted
geometric mean of thé.(z) ,k=1,..., K.

This relationship is of particular interest when considering the
rate of decay of the tails of distributions. Any non-zero weighting
given togx (z) corresponding to a bounded pdf,(x), will result
in a bounded (z). Similarly, if all f(x) pdfs have slow tail decay
rates,f (z) will also inherit this property.

In the above discussion, no form was imposedypfr) and,
hence, these results apply equally to rank based score functions as
they do to non-rank based equivalents.
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