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ABSTRACT

Quantiser design for a nonlinear filter is considered in the con-
text of a decentralised estimation system with communication con-
straints. The filter is based on quantised outputs of a discrete-
time, two-state Hidden Markov Model (HMM) as measured by
two remote sensor nodes. The optimal quantisation scheme is ob-
tained by maximising the mutual information between the quan-
tised meaurements and the hidden Markov states. Filter perfor-
mance is measured in terms of the probability of estimation er-
ror and is investigated through simulation for HMM'’s with both
independent and correlated white Gaussian noise in the measure-
ments. The performance of the filter based on continuous, un-
quantised signals provides a benchmark for the performance of
the filter based on quantised measurements. Therefore a method
for computing the probability of estimation error directly for the
continuous filter is also presented.

1. INTRODUCTION

In Communications systems, there often arises the need to quan-
tise data before further processing or transmission, for example,
in bandwith limited communications channels such as might be
found in decentralised estimations systems like the one shown in
Figure 1. The system consists of two remote processing nodes
and a fusion center. In this work, X}, is a discrete time, two-state
Markov chain, and the fusion center estimates the hidden state X},
based on quantised inputs 17,3 obtained from the continuous sensor
outputs Y = X + V;, j = 1,2 up to time k. The noises V; are
asssumed to be sequences of independent identically distributed
(i.i.d) random variables. The fact that Hidden Markov Processes
can model many nonlinear systems well provides the motivation
for studying them in this context.

Quantiser design for linear decentralised estimation systems
has been investigated by many authors, for example [1, 2, 3]. For
detecting deterministic signals in additive white Gaussian noise, it
has been shown [4] that using identical binary sensors is asymp-
totically optimal as the number of observations per sensor goes to
infinity. For nonlinear filters, quantiser design based on minimis-
ing the information loss characterised by means of a functional
central limit theorem, has been investigated in [5]. A more direct
approach for HMM'’s, based on maximising the mutual informa-
tion between the quantised measurement and the hidden Markov
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state was investigated in [6], and it is this work which is gener-
alised here in the context of decentralised estimation.
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Fig. 1. Decentralised Estimation System.

In particular, the methods for quantiser design, and for directly
computing the estimation error are generalised to the case of two
sensors (Section 3). Also, through simulation studies (Section 4)
the following three questions are addressed. (1) What happens to
the performance of the continuous filter when the noise level in one
of the sensors becomes large? (2) If one sensor has a restriction on
its available bandwidth, and thus, on the number of its quantisation
levels, then can any significant improvements in the performance
of the quantised filter be achieved by adding a second sensor with
higher noise level, but perhaps with more available bandwidth?
(3) In the case of independent noise, is there a simple relationship
between the quantisation scheme obtained jointly for the two sen-
sors and the quantisations schemes obtained individually for each
sensor?

Simulations were performed for HMM'’s with white Gaussian
noise. With regard to questions (1) it was observed in the case
of correlated noise, that there exists a critical signal to noise ratio
beyond which filter performance improves as the signal to noise
ratio increases. In regard to question (2) it was observed again
in the case of correlated noise that in general, improvements in
filter performance cannot be guaranteed simply by the addition of
a second sensor.

2. MODEL DEFINITION

In the following, all stochastic processes are defined on the proba-
bility space (2, F, P). Consider a discrete time, two-state Markov
Chain { X} with state space S = {x1, 2}, and transition proba-
bility matrix A = (aij), where aij = P(Xk =z; |Xk_1 = xz)
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for 4,7 = 1,2. Without loss of generality it is assumed that
z; = (—1)¢ for i = 1,2. To simplify the computations it is
also assumed that {X} has symmetric transition matrix A =
[1“" %], where 0 < a < 1. The sensor output at time k,

a l—-a
is given by Y, = (Yk,Yk) whereY’ = X, + Vi forj=1,2.
The noises {V; } and {V;’} are, respectlvely, sequences of |nde-
pendent identically distributed (i.i.d) random variables with known
densities, which are also independent of { X} }.

An M level quantisation scheme for {Y}'} is defined using
the partition of the real line —co = 44 < ¢! < --- < 4l =
as follows. For each & = 0,1,..., the quantised sensor Y3 is
defined by Y3} = m, for the unique m € {1, 2,... , M} satisfying
£L_1 <Y{ <€) An N level quantisation scheme for {Y;?} is
defined analogously.

Define Ve = O'(Y(), - ,Yk) and 5)]‘, = O'(Yo, . ,Yk) Let
)?k denote the filtered estimate of X at time k. Then for continu-
ous measurements, X = sign(Qx) where Qi = E[Xk |Vk]. For
guantised measurements X = sign(Qx), where Qx = E
Standard definitions of mutual information and conditional en-
tropy, as used in [6], are used in this work.

3. QUANTISER DESIGN

Let fy|x (yx|z:) denote the conditional density of Y3, given X, =
x;. Then the conditional probability distribution of Y3, given X, =
x; is given by:

bn  ta ,
Prxtmnle) = [7 [ 7 frx vleddr’ay’ @)
lm—l ln—l

Let ITy, denote the conditional probability vector for the fil-
ter observation g when contiuous measurements are used, where
Hk|k(i)_: P(Xk = :I,‘1|Yk = Yky--- , Yo = yo), fori = 1,2.
Define IIj, by analogy when quantised signals are used. Then
these vectors are updated by the recursive relations [7]:

1

I TAN Biy1 Al )

Wyq1jp41 =

Miyak41 = Biy1 Allg ©)]

15 Br411I

where By, = diag [fy|x (yx|21), fr|x (yklz2)], 15 isa (1 x 2)

vector of ones, By = diag [Py | x (mx, n|z1), Py | x (M, ng|z2)].

It follows from the definition of g, that g, = I (2) — g (1).
Hence, using (2), the iterative update equation for gz, is given by:

Ci — Ci + (Ci + C)Bax—1
Ci+ CE+ (C; — C})Bar-1

where 8 = 1 — 2o, Cy = fy|x (yxl1), CF = fy|x (yr|e2).
The method used to determine the quantisation levels £,5,, 1 <
m < Mand £2, 1 < n < N is based on maximising the mu-
tual information between the Markov state X, and the quantised
observation sequence {Yy, ¥1,... , Y% }. The justification for this
approach [6] is based on the fact that intuitively, since a filter per-
forms information processing on the observation sequence, the fil-
ter performance can be improved by maximising the amount of
information in the observation sequence about the state [8]. It fol-
lows from the definitions of mutual information and conditional
entropy that the mutual information is maximised by minimis-
ing the conditional entropy H (Xy|Yo, ... , ¥%) which is bounded

ar = g(Yk; qr—1) = 4

above by H(Xk|17k). In the absence of a closed form expres-
sion for H(X|Yo,... , Y), the bound H(X4|Y%) is minimised.
Clearly the resulting conditional entropy H*(X|Yo, ... , Y:) af-
ter minimisation can be no greater than the minimum H*(Xk|17k).

Due to the underlying simplicity of the model, it was seen
[6] that the bound H(X4|Y%) is reasonably tight and good filter
performance can be obtained. As model complexity increases,
the method can be extended to use progressively tighter bounds
H(X|Yx, Ye—1) etc with a corresponding increase in computa-
tional complexity.

Using the defintion of conditional entropy and Bayes’ Rule we
have

2
Z Z ZPXY Ti, M, n)logPX|Y($2|m n)

Xk|Yk
i=1 m=1n=1
1 2 M N
=73 >3 Prix(m,njzi)log((m, nli)
i=1 m=1n=1
¢(m,nli) = Poix (m, nie:)

Py x (m,nl|z1) + Py x(m,n|zs)

Direct computation of the continuous filter error requires the con-
ditional density S;(q, §) = fo.|x,0._, (¢|Ti, d), whose existence
is guaranteed under the following assumptions. For each § €
(—1,1) define gg: R> — R by gs(y",9%) = g(y',°, )
there exists a family of functions f;: R* —» R, § € (—1,1) such
that each G4 = (g4, fq) has continuously differentiable inverse
H;: (—1,1) x R = R, then S;(q, §) exists and is given by:

/ frvix(H,

where Jr, (g, 2) is the Jacobian of Hg. Given S;(q, §), the esti-
mation error (PFE) is computed using the steady state solutions of
a discrete approximation to the recursive equation [6]:

q,Z)|$q, |JH q,Z)|dZ

finla Za” / Sila, DL (@)dd 5)

4. SIMULATIONS

Simulations were performed for HMM’s having Gaussian noises
V§ ~ N(0,0;), 5 = 1,2 and correlation coefficient r. The con-
ditional density of Y given X = x; is given by:

o { St

where u; = (y' — z;)/o1, vi = (y* —x;) /o2 and kK = 1/(1 —
r?). For the correlated noise case, using an appropriate change of
variables, the integral in (1) can be written in terms of the Standard
Normal Bivariate Integral:

r ok
®(h,k,r) = 2—\/E / / exp {—g(u2 — 2ruv + UQ)} dudv
T J_ooJ—o0

frix@' vz = i — 2ruv; +Ui2)}

27r0 a2

which was computed using a Gauss quadrature method. Moreover
with fz(y*,y*) = 3> for each § € (—1,1), the conditional den-
sity Si(q, ¢) was found to be:

~ 1 KT b2
Si(a,d) = |01|mo1o2(1—g2)V a xp { 4a c} ©)
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Fig. 2. Simulated PFE (Case 1, r = 0).
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The intergal in (5) was computed numerically by discretis-
ing the domain which reduced (5) to a matrix recursion. It was
shown [6] that there exists a unique solution to the matrix recur-
sion which, by continuity, converges to a solution of (5).

All simulations were obtained from data sets using 100,000
points, averaged over 5 sets of 20,000 points each. Optimisation
was performed using a sequential simplex search routine (Matlab’s
optimisation toolbox). The transition probability matrix for the
Markov Chainwas A = [ 3-8 8-2]. Simulations involving three val-
ues of the correlation coefficient, r = 0, 0, 3, 0.7 were performed
for the following four noise level cases. Cases 1 to 3 had o fixed
at 0.8, 1.6 and 2.5 respectively, while o> was sampled logarith-
mically in the range (0.5,4). In Case 4, o1 = a2, and o2 was
sampled as in cases 1 to 3. For each (o1, 02) pair, a theroetical
computation of the PFE for the continuous filter, and a simula-
tion based computation of the PFE for the continuous filter was
performed. Also, a quantisation scheme was calculated, and sim-
ulation based computation of the PFE for the associated quantised
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Fig. 3. Simulated PFE (Case 1, r = 0.7).

filter was performed for every combination of quantistion levels in
theranges 2 < M < 6and 2 < N < 6. Further simulations in-
volving » = 0.1,0.2,. .. , 0.8 were performed for the continuous
sensor filter only to further investigate the behaviour of the filter
under large differences in the values of o1 and o».

The typical behaviour of the filters is illustrated in figures 2
and 3. It was seen in almost all cases, that there was good fit be-
tween the theoretical filter error curve obtained from equation 5
and the simulated error curve obtained using continuous measure-
ments. The discrepancies for small o values are attributed partly
to limits obtained by machine precision, and partly to errors intro-
duced by discretisation of the integral in equation 5.

A surprising result seen in cases 1 to 3, is how filter perfor-
mance improves as o increases beyond some critical value. This
result was investigated further through simulations for the contin-
uous filter for » = 0.1,0.2,...,0.8, with the results for case 1
shown in figure 4. Results indicate that the worst filter perfor-
mance (maximum PFE) occurs at the critical value o2 = o1 /r.
Furthermore, this value corresponds to the performance value of a
single sensor filter (with noise level a4). It should be stressed that
this result applies to > 0 only.

This behaviour can be explained as follows. The correlation
coefficient, r, between two real valued signals indicates the degree
to which both signals tend to have the same (» > 0) or opposite
(r < 0) sign. The correlation coefficient introduces a bias into
the filter which enhances filter performance. However, the perfor-
mance of the filter also suffers from reduced independence in the
two signals. Thus for a given amount of correlation, the loss in per-
formance of the filter due to reduced independence and increasing
noise levels is offset by the gain in performance from improved
noise sign estimation.

With regard to question 1, the limiting behaviour of the con-
tinuous filter for large o2 can be seen from the recursive update
equations 2 and 4 for the filter. As o2 — oo, the resulting equa-
tions approach the case of a single sensor filter with noise level
o = o1/+/k. Simulations for a2 > 4 were performed for case 1
to further investigate this behaviour, however, in the case of cor-
related noise, as seen in figure 5, filter performance does not ap-
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Fig. 4. Continuous filter: Simulated PFE (Case 1).

proach that of the single continuous filter as o> becomes large, but
approaches a lower value instead. This result can be explained by
the fact that even at large noise levels, the bias introduced by the
correlation is still present in the filter.

In the simulations involving quantised filters, it was seen in
almost all cases that the performance of the quantised filter could
be made to approach the performance of the continuous filter with
relatively few numbers of quantisation levels, indicating the use-
fulness of the mutual information based approach to quantisation.
In general, the presense of correlation in the signals meant a re-
duction in the amount of mutual information between the signals
and the Markov state, which resulted in reduced filter performance.
This was especially noticable for low numbers of quantisation lev-
els.

Question 2 can be addressed from the simulations involving
cases 1 to 3. Firstly, it was observed that, at worst, the addition
of a second sensor made no change at all to filter performance,
while at best, the filter could be made to perform better than the
corresponding single continuous filter (with noise level o1).

In the independent noise case, filter performance degraded as
o> increased in all cases. In the correlated noise case, for o2 in
the range o1 < o2 < a1 /r, improvements in filter performance
were achievable with the addition of a second sensor in all cases.
However, the level of improvement decreased as o2 increased until
the critical value was reached, at which point no improvement in
filter performance was obtained regardless of the number of quan-
tisation levels used. As o increased beyond the critical value, im-
provements in filter performance with the addition of a second sen-
sor began to increase again with the exception of the case M = 2,
in which no further improvements were observed, regardless of the
number of quantisation levels for the second sensor.

Perhaps the most important observation that can be made in
the case of correlated noise is that improvements in filter perfor-
mance are no longer guaranteed by the addition of a second signal.

With regard to question 3 it was observed that quantisation
schemes obtained for each sensor from the joint distribution were
dependent on the noise levels in both sensors. For a given sen-
sor, the corrsponding single sensor quantisation scheme was ap-
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Fig. 5. Continuous filter: Simulated PFE (Case 1, large o2).

proached only as noise levels in the other sensor increased without
bound.
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