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ABSTRACT

Bayesian estimators have applied to both random and deter-
ministic parameters. In the Bayesian estimation of determin-
istic parameters, the randomness is introduced only through
the observations and the prior distributions are adopted to
impose certain constraints. In such cases, neither the well
known Cramer-Rao lower bound (CRLB) or the posterior

CRLB can be used reasonably as the performance lower bounds.

In this paper, the theory of CRLB is extended under the
Bayesian framework to provide the lower bounds for both
unbiased and biased Bayesian estimators of deterministic pa-
rameters. An example is provided to show the effectiveness of
the proposed lower bound over other popular lower bounds.

1. INTRODUCTION

Cramer-Rao lower bound (CRLB) [1, 2] is a widely used
on the variances of unbiased estimators. It was developed
under a frequentist set up where the unknowns are consid-
ered deterministic and inferences are drawn from the like-
lihood distributions. When the unknowns are random, the
Bayesian methodology is usually adopted and the counter-

part of CRLB herein is known as the posterior CRLB (PCRLB),

which is the lower bound on the posterior variance of estima-
tors [1, 3].

Theoretically, the Bayesian methods are only applicable
to problems whose unknown parameters are random. How-
ever, in engineering applications, they have been employed
for the estimation of deterministic parameters as well [4, 5].
There, the deterministic unknowns are treated as if they were
random and the prior distributions adopted can be inter-
preted as constraints. By no means, the priors indicate the
randomness of the unknowns and the randomness is only
introduced by the observations. Consequently, the perfor-
mance of these Bayesian estimators for deterministic param-
eters should be evaluated through the variance or the mean
square error (MSE) with respect to the likelihood function
rather than the posterior variance. In fact, in such cases, it
is a common practice to use MSEs to compare Bayesian esti-
mators with the maximum likelihood estimators (MLE)[4, 5].
However, for Bayesian estimators, since inferences are drawn
from the posterior distributions, CRLB can not be used as a
low bound any more. To assess the performance of Bayesian
estimators for the deterministic parameters, and especially,
to provide the comparison with MLE, it is of both practi-
cal and theoretical importance to formulate a lower bound
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on the variance or MSE. To the authors’ best knowledge, no
such bounds have been reported in the literature and it is
the objective of this paper to establish such bounds.

We first briefly introduce the basic concept of Bayesian
inference as well as CRLB and PCRLB. We then derive the
desired lower bounds for both unbiased and biased estimators
for the scalar and vector parameters. In addition, we also
discuss the case when nuisance parameters exist. Finally, an
example is presented to illustrate effectiveness of the obtained
bounds.

2. THE PARAMETRIC INFERENCE AND
LOWER BOUNDS OF ESTIMATORS

Suppose that a vector of noisy observation y is generated
from some model parameterized by a vector of the unknowns
0. The objective of the parametric inference is to provide
an accurate estimate of the unknowns 6. In non-Bayesian
approaches such as MLEs, the unknowns @ are considered as
deterministic, and inferences of@ are drawn from the likeli-
hood distribution p(y|@). The performances of unbiased es-
timators are usually evaluated by comparing the variances or
the covariance matrix of these estimators with lower bounds
like CRLB. To introduce CRLB, suppose that the covariance
matrix of the estimate 0 is defined by

C(0) = Ey[(6 - 0)(6 - 6)"] (1)

where Fy[] denotes the expectation with respect to the like-
lihood function p(y|@). Then, CRLB indicates that if p(y|0)
satisfies the Wolfowitz’s regularity condition [2], the covari-

ance matrix C(0) satisfies

C.

0 =170 (2)

where I(0) denotes the Fisher information matrix which is

given by

9 np(y10) 5
00,00, ) 3)

The estimators which achieve CRLB are usually said to be

efficient.

On the other hand, in Bayesian approaches, the unknown
parameters @ are considered as random and inferences are
drawn from the posterior distribution p(@|y) which is pro-
portional to the product of p(y|@) and the prior distribution
p(#). The minimum mean square error (MMSE) estimator

(1(0)]i; = —Ey]
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and maximum a posterior are the most popular Bayesian es-
timators. The Bayesian analogy of the CRLB is called pos-
terior CRLB which is the lower bound on the Bayesian MSE
and has the form

E, gl - 0)@ -0 >1;" (4)

where I7 is an information matrix with ij-th element defined

as
_ 9*Inp(y, 6)
{Ir}i; = _Eyﬂ[iaeiaej ]. (5)

Notice that the expectation here is with respect to both
p(y|0) and p(0), hence PCRLB is independent of 6.

3. THE LOWER BOUNDS OF BAYESIAN
ESTIMATIOR FOR DETERMINISTIC
PARAMETERS

In practice, Bayesian approaches are often used to estimate
deterministic parameters. Although in such cases, the pa-
rameters are treated as if they were random, the randomness
of the problem still only comes from the data like in any
deterministic scenario. Hence, the variance rather than the
Bayesian MSE of the estimators would be the characteris-
tics for evaluating the performance of the Bayesian estima-
tors. However, since CRLB does not consider the contribu-
tion from the prior distribution p(8), it cannot be used as the
lower bound for the Bayesian estimators. In what follows, the
theory of CRLB is extended, under the Bayesian framework,
to provide the lower bounds of the Bayesian estimators for
deterministic parameters.

3.1. The lower bounds for the scalar parameter

Let 6 and 05 represent the unknown scalar parameter and
its Bayesian estimate. Since ¢ is deterministic, the bounds
desired are on Ey[(fp — 0)?] which defines the variance of
05 when 0 is unbiased, or MSE when 0 is biased. Before
deriving the lower bounds, we would like to first introduce
the following proposition.

Proposition 1

dnp(y,0) & Inp(yl6), , Olnp(d) ..
o0 o T g ) (©

Proof: Consider a trivial equality

Ey[ ]2 = _Ey[

/ p(y.0)dy = p(6) (1)

Differentiating both sides of (7) over 0, and considering the

transformations of ap%,e) = alngéy’g)p(y, 6) and 8%—(:) =
%p(@L we have
9Inp(y,0) ~ 9lnp(0)
[ 2B yioyay = 2. )

Now, differentiate (8) over 6 again , we have

& Inp(y,9)

/Tp(yIH)dwa
Olnp(y,0) 0lnp(yl|d 9% Inp(6
[ DI gy — SRED (0)

which may be further written as

/%Wp(ylﬁdﬁ
[ S Outyimay + [ (RO oy -
8111812(9) / 8ln]a)(0y,0)p(y|0)dy: 1o} 1811012)(9) (10)
In review of (8), we then have
5, | TNy |y (O e 2101 Oz oy
iy (PO gy (TP | (OIPO)y2 (g
¢

_ Now let us first consider an unbiased Bayesian estimator
0. The following theorem provides a lower bound on the
variance of 6.

Theorem 1 (Lower Bound of the Unbiased Bayesian
Estimator for the Deterministic Scalar Parameter )
It is assumed that p(y|0) satisfies the regularity condition

Olnp(yl9)

E}’[ 89

]=0 forallé. (13)

Then, the variance of any unbiased Bayesian estimator must
satisfy

var(d) > (Ey[az nplvlo)) .

<ah;’;(‘9)>2) (1

Furthermore, an unbiased Bayesian estimator may be found
that attains the bound for all 0 if and only if

OWr(y-0) _ i 9)(g(6) - o) (12)

for some functions k(-) and g(-). That estimator is 0 = g(0)
and the minimum variance is 1/k(0).

Proof: Since the estimator is unbiased, we have

Ey(0—0)=0 (16)

/ (6 — 0))plyl0)dy = 0 an

After multiplying the prior p(0) to the both side of (17) and
differentiating over 6, we have

_ /p(y, 0)dy + /(é _ e)%“fe’e)dy 0. (18)

Since [ p(y|6)dy = 1, (18) can then be expressed as

/ 0= 0 TG Dyt 0y =p0). (1)
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Applying the Schwarz inequality on (19), we obtain

J6-0rnv00ay [(CREE-D 200y, 010y = 17(0)

or

>
—~
\

var(

ey

= (~m T PupO) o

The last equality is the direct result of Proposition 1. Note
that the condition for the equality in (20) is

Olnp(y,0) A
—a0 = k(6)(0 — 0) (21)

for some function k(-), which is the condition for 6 to attain
the lower bounds. ¢

Comparing the lower bound (14) with the CRLB, we see
that they differ by the second term (%’;(6))2 in the denom-
inator of (14) and since this term is nonnegative, we thus
have the following corollary.

Corollary 1 Let 0p denote an unbiased Bayesian estimator
who attains the lower bound (14) and O denote an efficient
estimator who attains the CRLB. Then

var(0p) < var(0g). (22)

The above corollary indicates that as long as we can obtain
an unbiased Bayesian estimator which attains (14), it will
have smaller variance than an efficient estimator. However,
in practice the Bayesian estimators are often biased which
leads us to provide the lower bound for the biased estimators.

Theorem 2 (Lower Bound of the Biased Bayesian Es-
timator for the Deterministic Scalar Parameter)

It is assumed that p(y|0) satisfies the regularity condition
(13). Then, the MSE of any biased Bayesian estimator must
satisfy

91n(b(0)p(0))
mse(6g) > 0+ 90

2 7Ey[8 lrgggy‘e)] n (811’18};(9) )2

where b(6) is the bias of the estimator 0.

b(6))*

Apparently, this is a bound on MSE of the estimator.

3.2. The lower bounds for the vector parameters

In this section, we extend the above discussion to provide
the bounds of the Bayesian estimators for the deterministic
vector parameters. Due to lack of space, the theorems that
follow are presented without the proof .

Theorem 3 (Lower Bound of Uniased Bayesian Esti-
mators for the Deterministic Vector Parameter)
It is assumed that p(y|@) satisfies the regularity condition

9Inp(y|0)

Eyl 00

]=0 forall@. (24)

Then, the covariance matriz of any unbiased Bayesian esti-
mator Op must satisfy

COp) >

= (1(6) +

I;'(0)
dlnp(@) dlnp(O) " _,
06 20 (25)

where 1 is the Fisher information matriz. Furthermore, the
unbiased Bayesian estimators may be found that attain the
bound for all @ if and only if

Oln 0
Or0) _ 1,0)(g(0) - 0) (26)
00
for some function g(-). That estimator is 05 = g(0) and its
covariance matriz is 15" (0).

Note that the positive semidefinite of I5(8), a direct implica-
tion from the Theorem 3 by the lower bound on the variance
of each component of O is
var([0s):) > (15" i=1,2,---,N (27)
Theorem 4 (Lower Bound of Biased Bayesian Esti-
mators for the Deterministic Vector Parameter)
It is assumed that p(y|@) satisfies the regularity condition
(24). Now, consider a biased Bayesian estimator @p with
bias b(@), then

Ey[05 —0)(65 —60)"] > H@O)I ()H(6) (28)

T
where H = 1+ 220) 1 1,(9) 22600 " gi0.cc H(O)I ! (6)H (6)
is at least positive semidefinite, therefore we have the bound
for the mse of each element of O as

mse([05]:) > [H(O)I; (0)H(0)] = i=1,2,---,N. (29)

i

3.3. Lower bounds in the presence of the nuisance
parameters

In this section, we extend our results to the case where part of
the unknows are nuisance parameters. In the presence of the
nuisance parameters, it is desired to eliminate them by in-
tegrating them out from the posterior distribution and what
is resulted is called the marginalized Bayesian estimator. To
develop the lower bound on the variance of the marginal-
ized estimators, we partition @ as 87 = [¢', 4], where
¢ and 1 represent the subvector of the desired parameters
and the nuisance parameters respectively. Now, suppose the
prior distributions for nuisance parameters are p(¥). The
marginalized likelihood function can be thus defined as

Plylg) = / P(y10)p(4)d. (30)

Then all the discussion in the previous sections can be di-
rectly applied to develop the lower bound for the Bayesian
estimators of ¢.
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4. EXAMPLE

Let us consider a simple problem of estimation of DC level
in the white Gaussian noise. The problem can be model as

yr = A+ wy t=0,1,---,N—1 (31)
where y: denotes the observation at time ¢, A is the unknown
DC level, and w; ~ N(0,0?) with 0 known. It is well known
that the CRLB for the estimate of A is [2]

var(A) > N (32)

and the efficient estimator is the sample mean estimator
which is expressed as Anp = % Zf\:}l Y.

Now, to study the problem from a Bayesian perspective,
we adopt a conjugate prior for A, i.e., p(A) = N(ua,0%)
with pa and 0% preassigned. We know that the choice of pra
and ¢% will affect the performance of the Bayesian estima-
tor. Typically, a more accurate estimator than Apsr, could
be obtained when g4 is chosen around the true value of A,
and performance of the Bayesian estimator would be more re-
semble to AML when 02A — 00. We thus should expect that
the lower bound of the Bayesian estimator embodies above
phenomenon. First, the PCRLB can be shown as

Bmse(A) > (% + 01?4 ), (33)

Obviously this bound is unable to reflect the effect of the
prior p(A) on the accuracy of the estimator. This is simply
because A is taken as a random parameter. Next, the lower
bound on the variance of any unbiased Bayesian esitmator is
obtained from Theorem 1 as

var(an) > (& + Aoy (34)

Several observations arise on the bound. First, the bound de-
pends on A. Second, no matter what the choices are for pa
and ¢%, the bound is not higher than the CRLB. However,
the bound still can not correctly reflect the the impact of p(A)
on the accuracy of the estimator. Actually, one can show that
there does not exist an unbiased Bayesian estimator which
attains the bound (34). In fact, the famous Bayesian estima-
tors are often biased. For instance, the MMSE estimator of
the problem is

Anmse = aAur + (1—a)ua (35)

where o = 0% /(04 +0%/N). This estimator is biased with a
bias of b(AMMSE) = (1—a)(na—A). Besides, the variance of
Anrwmse is a?0?/N. Now let us determine the lower bound
on the MSE of all the Bayesian estimators which have the
bias b(A). It follows from Theorem 2 that this bound can be
written as

(a+ (1 —a)(ua — A)*/0%)*
N/o?+ (A= pa)?/o%)
= 0 /N+(1- ) (A pa)?
= b(Ammse) +var(Ayuse)
= mse(/lMMSE) (36)

mse(A)
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MSE
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Figure 1: Plot of CRLB and the proposed bound for the
example as a function of ua and oa4.

The last equality indicates that among all the Bayesian es-

timators which bear the bias b(Aymmse), the MMSE esti-
mator is the one which attains the bound. In Figure 1, the
bound (36) is plotted together with the CRLB as a function
of pa and o4. It shows that the bound (36) also correctly
reflects the aforementioned phenomenon regarding the dif-
ferent choice of pa and o4 on accuracy of the estimator.
Obvious, the bound (36) is the only bound which can reflect
the true state of the Bayesian estimators for deterministic
parameters.

5. CONCLUSION

Lower bounds were developed for both unbiased and biased
Bayesian estimators of deterministic parameters. We have
shown that the variance of any unbiased Bayesian estima-
tor which attains the proposed bound is always smaller than
CRLB. Our example demonstrated that our proposed bounds
are the appropriate benchmark on the performance of Bayesian
esitmators for deterministic parameters.
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