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ABSTRACT

Two detectors based on the GLRT are presented to detect
a chirplet in coloured Gaussian noise for known and un-
known covariance structure, respectively. They are applied
to detect multiple chirplets by atomic decomposition, which
is modified to account for the operation conditions of both
detectors. Both detectors are CFAR with respect to the
noise power. The second one is CFAR with respect to the
covariance structure as well.

1. INTRODUCTION

Detection of signals in complex environments keeping the
false alarm probability constant despite changes or lack of
knowledge about the background noise (clutter, jamming)
is an important issue in radar and signal interception ap-
plications. Assuming stationarity within the signal frame
under analysis, we propose two detectors based on atomic
decomposition for zero-mean, circularly complex, coloured,
Gaussian noise (CCGN) that extends a previous detector
intended for complex white Gaussian noise (CWGN) [1].
The signal is modeled as a linear mixture of chirplets, which
are used to model a wide variety of natural and man-made
signals. Every chirplet
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is defined by a four-parameter vector v = [a, 8, T, f]T «a
is inverse to the duration (1/2/a), B is the chirp rate, T
and f are the mean time and frequency, respectively.

The first detector (L1) assumes known noise covariance
structure and unknown power, and is based on the gen-
eralized maximum likelihood ratio test (GLRT) for only
one chirplet in CCGN. The second detector (Lz) assumes
both unknown noise covariance structure and power and is
inspired in the previous one. First of all, we present the
structure of L; and Lz for only one chirplet in CCGN and
analyze their performance in terms of false alarm and detec-
tion probabilities. Their constant false alarm rate (CFAR)
character is remarked. Then, the extension to the detection
multichirplet signal with unknown number of components
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CCGN is carried out using atomic decomposition (AD),
also known as matching pursuit [2].

AD is an adaptive approximation technique providing
a sparse and meaningful representation of a wide range of
signals by the use of a very redundant dictionary of func-
tions called atoms. Let D = {h,} be the dictionary, and x
the signal under analysis, the atoms of the signal expansion
are usually obtained according to

Y = argmax|(xp-1,h,)[* (2)
Y
bP = <XP—17 hﬁp) ) (3)
p-th residual: xp = =Xp-_1 —/Eph%, p=12..., (4)
Xo = X .

This implementation features that the first extracted atom
by AD is the maximum likelihood estimate (MLE) for one
chirplet in CWGN [3]. Moreover, the detector for a multi-
chirplet signal in CWGN applies the GLRT for a chirplet to
every atom extracted by AD [1]. As the noise is coloured, we
modify AD suitably so that the intimate relation to MLE is
preserved. For every detector (L1 and Lz) a new expression
for AD is found. The validity of both schemes for multiple-
chirplet detection is also illustrated by simulations.

2. DETECTION OF ONE CHIRPLET IN NOISE

For a chirplet in CCGN, the probability density functions
for the well-known hypothesis testing problem are *

xH1Cx
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Signal x is the signal under analysis, and bh, the chirplet.
C is the covariance structure and o2 the power of the noise.
N is the signal length. Next, detectors Ly and L2 for only
one chirplet are described.

LHyg is the null hypothesis (only noise), H; is the alternative
one (a chirplet in noise).
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2.1. Detection in CCGN with known structure
It can be proved from (6) that the MLE for the chirplet is

. picx’ i
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These equations are similar to the atom extraction in usual
AD (Egs. 2, 3) taking into account the mnoise covariance
structure, though. Additionally, the noise power MLE un-
der Hy becomes

He-1

2 x"C7'x

UHO = 7]\[ . (9)
After some manipulations, the GLRT (denoted Lji) be-

comes

b2 hC 'hs nic x| =
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Note that, for the particular case of CWGN, ie. C =
Iy, ? the MLE from (7) results in the usual AD formula-
tion (Egs. 2, 3). Consequently, L1 becomes the GLRT for
CWGN obtained in [1]. The particular detector for CWGN
is denoted Lg in the sequel. Ly is CFAR with respect to
the noise power and exhibits the same Ppa curve regardless
of C, as shown through simulations in Fig. 1.

2.2. Detection in CCGN with unknown covariance
structure

In this case, the MLE for the pdf in (6) becomes ill-posed,
since, unlike other similar approaches based on the Adap-
tive Matched Filter [4, 5], we do not have signal-free training
data to estimate C. Under hypothesis Hi, the MLE would
lead to the C estimate

Cnu, = ﬁ (x—ghq) (x—/l;hq)H , (11)

O'Hl

which is a rank-one matrix. Thus, the inverse does not
exist and cannot be replaced in (6). The problem may be
regularized constraining the MLE in the subset of Toeplitz,
Hermitian matrices, but the optimization problem does not
have analytical solution, and the search space is highly di-
mensional 2 to be solved numerically.

We propose an efficient algorithm inspired by the previ-
ous detector Ly that estimates the chirplet parameters and
the covariance structure by an iterative procedure. The al-
gorithm splits the estimation problem into two steps. The
first step estimates the chirplet and the second one the co-
variance structure C. The procedure is iterated to improve
the estimation of both the chirplet and C. At every it-
eration, Eq. (7) of L1 could be used with the C estimate
from the previous iteration. However, it would required
the inversion of the C estimate. We filter the signal by

2Iy is the N-identity matrix

3Dimension N + 4 + 2: 4 is the dimension of the chirplet
parameter vector -, and 2 refers to the chirplet coefficient b,
which is complex.

means of a whitening filter estimate instead. Both inverse-
of-C and whitening-filter approaches are equivalent: The
former looks at the signal samples as a random vector and
the latter as a stochastic process. To attain high efficiency,
autoregressive (AR) modeling is utilized, so that the Pre-
diction Error Filter becomes the desired whitening filter [6].
The algorithm works as follows

Step 0: F© = Filter with impulse response &(n)
) H 2
(FOm))" 7O
Step 1: 70 = arg max - {2)
7 |F® (bo)I?
, H
FO (heg F@
’g(i+1) — ( ( 7 H))) . (x) ’ (13)
17 (hsm) |
Step 2: FU*D = Prediction Error Filter by

AR modeling of x —/I;(H'l)h,?(iﬂ) .
Goto Step 1 unless termination

Termination occurs when the change in the chirplet esti-
mate from an iteration to the next one is below a threshold.
Operator F is the Prediction Error Filter computed at
the i-th iteration. The operation F*) (s) means filtering of
signal s. To initialize, F(*) assumes white noise. The AR
model and, therefore, the Prediction Error Filter are com-
puted by the Burg’s method [6] due to its numerical sta-
bility and its recursive implementation. At every iteration
the AR order is optimum according to the Akaike’s Final
Predictor Error [7]. Any stationary process with continuous
spectral density can be written as a unique AR model [8],
so that the proposed method is general. For some processes
requiring AR models of order co, such as Moving Average
(MA) ones, a loss in performance may be expected since the
AR order is upper-bounded for practical reasons. However,
the algorithm works without appreciable losses.

Final values in the optimization process are represented
without superscript: F, ¥, 3, and the detector becomes

(F ) F&)| u,

L (x) = — 2 th, (14)
3%, IIF m)I* o
2
&%{0 — ||.7:(X)|| . (15)

N

L2 is CFAR with respect to the covariance structure and
the noise power, as shown through simulations in the next
section.

3. PERFORMANCE ANALYSIS

The section is devoted to the analysis of detectors Ly and
L2 in the monochirplet case by simulation. For the opti-
mization in Eqs. (7) and (12), a genetic algorithm refined
by a Quasi-Newton method is used. This algorithm is de-
scribed in [1, Table 1]. The number of samples (V) is 1024.

3.1. False Alarm Probability

Fig. 1 shows the Pra of both Ly and L2 simulated for differ-
ent covariance structures C: white, 1st-order AR, 1st-order
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MA, and 2nd-order AR noises. For AR noises, the poles
(pi) are written in the legend. For MA noises, the zeros
(zi). Two important properties arise: 1) for L1, the false
alarm probability (Pra) curve is independent of C, and 2)
L2 is CFAR with respect to C. Theoretical proof of these
two properties is under investigation. Both detectors are
CFAR with respect to the noise power, since Egs. (7), (10),
(12), and (14) are scale invariant.

L1 L2
10° & [r

10° ~©- CWGN
% | 5 AR, p1=0.3
K | —— AR, p1=0.9

%l A MA z1=-1/3
;

4
»

Probability
=
o
=
o
Probability

ey
1S)
&

P 10”
15 20 25 5 10 15
Th Th

20 25

Fig. 1. Pra vs. threshold of Ly (left) and Lz (right).

3.2. Detection Probability

Detection performance of Ly and L2 is summarized through
results obtained for three chirplets, denoted 1, 2 and s,
whose parameters are: v1 = [107°,3 1072, 500, 0.25],

vz = [107%,0,500,0.25] and ys = [107?,3 10,500, 0.0714].
We use the Energy-to-Noise Ratio (ENR) instead of the
SNR, since ENR does not depend on the chirplet param-
eters [1]. ENR is defined as |b|? /o, with |b|*> the chirplet
energy and ¢ the noise power.

The sensitivity of the detectors is plotted in Fig. 2 for
several 1st-order AR processes. The correlation coefficient
p (it is equal to the pole value in this case) between two
successive samples is used in the horizontal axis. The sensi-
tivity is defined as the minimum ENR attaining Pd = 90%
at Pra = 107% Detector Lo (intended for white noise)
is also tested. Li performs better than L2, as L2 has to
estimate the covariance structure. In general, L1 and Lz
outperform Lo, since Lo assumes white noise. However,
Lo turns out to be better if the noise and the chirplet are
close in the time-frequency plane (3 with both L1 and L2).
Except for this situation, the general rule-of-thumb is that
the further the noise and chirplet are in the time-frequency
plane, the better the sensitivity becomes. For Lo, the sen-
sitivity does not depend on the chirplet duration (), as in
the presence of white noise [1].

As for the termination condition in L2 (Egs. 12 and 13),
after two iterations, low error is achieved. As an example,
Fig. 3 shows the root mean squared errors (RMSE) of the
« estimate of chirplet 41 in a 1st-AR noise with p = 0.9
for several ENR’s. The RMSE in the estimation of the AR

41deal behavior of the optimization algorithm in Egs. (7), (12)
is assumed.

parameters (AR parameters considered as a vector) is also
plotted. Clearly, the RMSE does not change from the 2nd
iteration on. The rest of the chirplet parameters present
similar behavior. Although not shown, the mean order be-
comes close to one (the true order) from the 2nd iteration
on.

The detection of <2 with L2 exhibits a relatively low
performance due to the proper philosophy of La: For low
ENR, Eq. (12) in step 1 does not estimate the true chirplet
because the global optimum is due to the noise. Then step
2 not only models by AR modeling the noise but also the
signal and, in the next estimation, the filter F*) tries to re-
move not only the noise but also the signal. If the chirplet
has chirp rate, the order required to estimate the AR model
of both signal and noise is high. On the contrary, for § = 0,
the required order is low. For practical reasons, the AR
order is constrained up to 10. Therefore, the AR model
includes both signal and noise for zero-g chirplets. F @ af-
fects both of them, and the signal cannot be estimated at
the next iteration. For nonzero (3, the AR model cannot
include the signal suitably since a higher order would be
required. Then, F mainly affects the noise. The prob-
lem disappears at high ENR, since (12) estimates the true
chirplet at the first iteration. For illustrative purposes, the
Pd curve is shown in Fig 4 for 2 in a Ist-order AR noise
with p = 0.9. At very low ENR, Pd rises up because the
AR modeling does not include the signal, which is negligible
regarding the noise, and F*) mainly affects the noise.
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Fig. 2. Sensitivity (dB) for L1, L2 and Lo. (Pd = 90%,
Pra =1079)

4. MULTICOMPONENT DETECTOR

Detectors L1 and L2 obtained in the monochirplet case are
extended to multichirplet signals using AD as in [1] for
CWGN. We use multi-L; and mono-L; to distinguish be-
tween the multicomponent algorithm and that intended for
only one chirplet. The usual AD is modified to take into
account the noise correlation. For multi-L1, AD is obtained
by (7), and (8). Mono-L; is then applied to the extracted
atom. Once the p-th atom is extracted, the p-th residual is
computed as in (4) and the extractions carry on. Similarly,
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for multi-L2, AD extracts the atoms using the iterative pro-
cedure from (12) and (13). Every extracted atom undergoes
then detector mono-Lz. In general, mono-L;’s use the same
threshold regardless of the extraction order. Additionally,
the AD stopping criterion for multi-L; consists of 4 succes-
sive atoms without passing the mono-L;’s. This is necessary
mainly due to the probabilistic behavior of the employed
genetic algorithm. For multi-L;, the Ppa is defined as the
probability that at least one atom surpasses the mono-L;
tests when there is only noise. In terms of Ppa, multi- Ly
and L2 exhibit the same CFAR properties as mono-L1 and
L2 in section 3. The thresholds change with respect to one
chirplet in noise, as the stopping criterion involves more
than one extraction.

A signal with three chirplets is studied. The first com-
ponent is chirplet 1. The second one is v4 (o = 1074,
B = —1073%, T = 500, f = 0.25). The third one is vs
(a=10"%, 8 =0, T =150, f = 0.25). The adaptive spec-
trogram [2] of the multichirplet signal is shown in Fig. 5.
The noise is a 1st-order AR process with pole 0.9. For multi-
L1, initially, the individual ENRs are 8.1, 11.5, 21.4 dB, re-
spectively, and assure Pd = 90% using mono-Ly when they
are alone. For multi-La, they are 10, 20 and 25 dB. The
initial ENR values are changed by adding the same increase
to build the curves of Pd for each chirplet in Fig. 6. In the
legend, mono means the monocomponent detection for a
monochirplet signal (only the first extraction), and multi
the multicomponent detection of the multichirplet signal.
The multi-L;’s are tested not only for the multichirplet sig-
nal but also when the signal is made of only one chirplet
(1, Y4 or v5). The Pd curves for both cases are similar.
The multi-L; Pd is greater than the mono-L; (only the first
extraction) since the multi-L; performs more extractions
(the stopping criterion).

The previous example shows the good performance of
multi-L;1 and L2. However, if there are several chirplets
with zero (3, multi-Lz may not detect some of them due
to the same reasons argued for the loss in performance for
chirplet 2 (section 3). The solution of this problem is still
under investigation.

5. CONCLUSION

Two detectors for mono- and multichirplet detection in cor-
related Gaussian noise have been presented. The first one
assumes known covariance structure and is based on the
GLRT for only one chirplet. The second one assumes un-
known covariance structure, and utilizes an iterative two-
step estimation algorithm that includes AR modeling to in-
crease the efficiency. The first one is CFAR with respect to
the noise power and the Pra curve does not depend on the
covariance structure. The second one is CFAR with respect
to both the noise power and the covariance structure, and
does not require the use of signal-free training data unlike
other approaches.
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Fig. 3. Estimation error vs. iterations for Lz. Noise is a
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Fig. 6. Pd for the multichirplet example. Ly (left) and L2
(right). Ppa = 107°.

VI -744




