



# INTELLIGENT SENSOR FUSION: A GRAPHICAL MODEL APPROACH

*José M. F. Moura, Jin Lu, and Marius Kleiner*

Department of Electrical and Computer Engineering  
Carnegie Mellon University, Pittsburgh, PA 15213  
[moura,jinlu]@ece.cmu.edu

## ABSTRACT

We study the fusion of data collected by multiple heterogeneous sensors that work cooperatively to achieve a common goal. This paper presents fast algorithms to fuse the sensor data. We map the problem into a graphical model and then develop a fast message-passing scheme to fuse the data. We simulate scenarios with 150 sensors and 200 targets that are successfully fused.

## 1. INTRODUCTION

Our work is relevant to many alternative scenarios and applications. To be specific, we focus on the tracking of multiple, possibly moving, targets by an ad-hoc network of autonomous, expendable sensors.

There are many issues related to the management of such ad-hoc network of sensors. We deal here with one, namely, with deriving a fast algorithm to fuse across the sensors the information extracted by each sensor from their local data. We do not consider related important issues that derive from bandwidth, computational, or power constraints, [1], that limit the operation of each individual sensor.

**Soft decision: Heterogeneous sensors** The sensors in the network may be of different physical types, possibly spanning several sensing modalities, e.g., acoustics, electromagnetic, or infrared; they can be point sensors or arrays of sensors; some may provide high resolution while others only coarse resolution; some sensors may be omnidirectional, while others may exhibit some level of directionality. This heterogeneity raises the issue of how to integrate the data from such diversity of modalities and resolutions. We fuse the information provided by the sensors not on the physical space of their individual measurements, but on the logical layer of their outputs. For example, to track targets with seismic sensors, we may move from the pressure or vibration signals at the front-end to the intermediate (still physical space) of features (spectral lines), and then to the logical

---

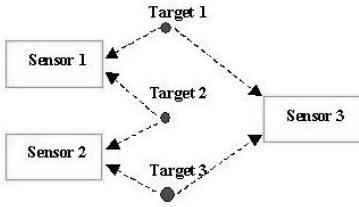
This work was partially supported by the DARPA ISP Program through the Army Research Office grant #DAAD19-02-1-0180 and by NSF through grant # ECS-0225449.

space in the back-end of “soft decisions”—the likelihood that each target is at a given location, given the physical measurements. These likelihoods are conditional probabilities.

**Probabilistic inference on graphical models** Most likely, individual sensors cannot make a reliable determination regarding the position of the targets on their own, but fusion of the appropriate sensors may provide reliable information about their locations. Fusing the soft decisions of the sensors is challenging because the sensors are local, survey areas that are only partially overlapping, have different resolutions and sensing ranges, and may exhibit intricate probabilistic dependencies. To achieve global space awareness, we need to integrate this disparate soft information into a coherent global framework. Graphical models are particularly good at capturing these assorted soft decisions with diverse interdependencies, [2, 3]. Our goal is to go from the set of individual sensors’ soft decisions—say the likelihood of  $M$  targets being detected, as computed by a given sensor—to the likelihood of a given target being detected, based on all sensors relevant to that target. We capture this integration of local partial views into a probabilistic inference problem on graphical models. These algorithms have received much attention in turbo and low density parity check (LDPC) decoding, [4, 5, 6].

## 2. SENSOR FUSION: INFERENCE IN FACTOR GRAPHS

To illustrate the approach we develop a simple example of three targets  $\{T_i, i = 1, 2, 3\}$  being sensed by three sensors  $\{S_j, j = 1, 2, 3\}$ . Sensor  $S_1$  measures targets  $T_1$  and  $T_2$ ; sensor  $S_2$  detects targets  $T_2$  and  $T_3$ ; and, finally, sensor  $S_3$  monitors targets  $T_1$  and  $T_3$ . The above relationships between sensors and targets are shown in Figure 1. Rather than outputting only the most probable location of each target, the sensors provide the probability of the targets being at each of the different possible locations. This probabilistic information, soft information, is in the form of a conditional probability, in our example,  $p(T_1, T_2 | S_1)$ ,  $p(T_2, T_3 | S_2)$  and  $p(T_1, T_3 | S_3)$ . The function  $p(T_i, T_j | S_k)$  stands for the



**Fig. 1.** Illustrative problem: 3 sensors and 3 targets

conditional probability that targets  $i$  and  $j$  are at positions  $T_i$  and  $T_j$  given the data collected by sensor  $S_k$ . The fusion goal is to derive for each target the conditional probability of its position based on the data collected by all sensors, i.e.,  $p(T_i | S_1, S_2, S_3)$ . These  $p(T_i | S_1, S_2, S_3)$ ,  $i = 1, 2, 3$  are the marginal probability functions of the joint probability function  $p(T_1, T_2, T_3 | S_1, S_2, S_3)$ , e.g.,

$$p(T_1 | S_1, S_2, S_3) = \sum_{T_2, T_3} p(T_1, T_2, T_3 | S_1, S_2, S_3). \quad (1)$$

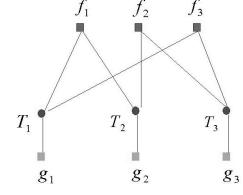
The problem with the marginalization in (1) is that it is of order  $O(M^2 L^M)$ , where  $M$  is the number of targets and  $L$  is the number of resolution beams (assuming all sensors have similar resolution).

We avoid the direct computation of the joint probability  $p(T_1, T_2, T_3 | S_1, S_2, S_3)$  and then its marginalization by computing the marginals through a graphical model called *factor graph*. A factor graph is a bipartite graph containing two types of nodes: *variable nodes* and *function nodes*. A variable node  $x$  is connected to a function node  $f$  by an edge if and only if  $x$  is an argument of  $f$ . This model leads to an iterative algorithm to compute function marginals. This iterative algorithm, the *sum-product algorithm*, computes the marginals by passing messages on the factor graph.

To map the problem into the factor graph, we find first a multiplicative decomposition of the joint probability function, usually referred to as the global function to distinguish it from the functions  $f$  that are the local functions. In this problem, the global function is  $p(T_1, T_2, T_3 | S_1, S_2, S_3)$ . Assuming that the targets  $\{T_i, i = 1, 2, 3\}$  are independent of each other and that the noises in the sensors  $\{S_j, j = 1, 2, 3\}$  are also independent, the global function factors into a product of six local functions, as shown in equation (2).

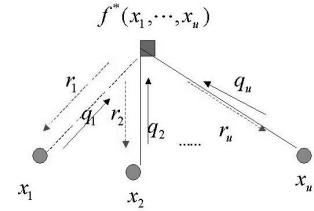
$$p(T_1, T_2, T_3 | S_1, S_2, S_3) = \underbrace{p(T_1, T_2 | S_1)}_{f_1} \underbrace{p(T_2, T_3 | S_2)}_{f_2} \underbrace{p(T_1, T_3 | S_3)}_{f_3} \underbrace{\frac{1}{p(T_1)}}_{g_1} \underbrace{\frac{1}{p(T_2)}}_{g_2} \underbrace{\frac{1}{p(T_3)}}_{g_3} \quad (2)$$

Since we have three variables  $\{T_i, i = 1, 2, 3\}$  ( $\{S_j, j = 1, 2, 3\}$  are just labels, not considered to be variables) and six local functions  $\{f_i, i = 1, 2, 3\}$  and  $\{g_j, j = 1, 2, 3\}$ , the factor graph for this problem is composed of 3 variable nodes and 6 function nodes, as illustrated in figure 2.

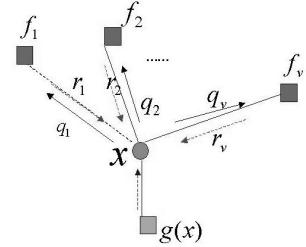


**Fig. 2.** Factor graph for problem in figure 1.

### 3. FAST SUM-PRODUCT ALGORITHM



**Fig. 3.** Message updating around function node



**Fig. 4.** Message updating around variable node

The sum-product algorithm is computationally demanding when the degree of the function nodes is high. For a function node  $f^*(x_1, x_2, \dots, x_u)$  connected by  $u$  variable nodes  $\{x_i, i = 1, 2, \dots, u\}$  in figure 3, the task of the message updating is to compute all the outgoing messages  $\{r_i(x_i), i = 1, 2, \dots, u\}$  with respect to all variables  $x_i, i = 1, 2, \dots, u$ , i.e.,  $r_1(x_1), \dots, r_u(x_u)$ , where

$$r_i(x_i) = \sum_{x_1} \dots \sum_{x_{i-1}} \sum_{x_{i+1}} \dots \sum_{\substack{j=1,2,\dots,u \text{ AND } j \neq i}} \{f^* \prod_j q_j(x_j)\} \quad (3)$$

In equation (3), the symbol  $q_j(x_j)$  denotes the incoming message transmitted from the variable node  $x_j$  to the function node  $f^*$ . We assume each variable  $x_i$  takes  $L$  different values so the  $u$ -argument function  $f^*(x_1, x_2, \dots, x_u)$  is represented by a  $u$ -dimensional array with each dimension having a resolution of  $L$  points. To multiply two incoming messages  $q_1(x_1)$  and  $q_2(x_2)$  to generate a  $L \times L$  array  $\pi_{12}(x_1, x_2)$ , we need to multiply every element of the vector  $q_1(x_1)$  with every element of the vector  $q_2(x_2)$ .

Hence,  $L^2$  point-wise multiplications are required. In the subsequent step, to multiply  $\pi_{12}(x_1, x_2)$  with  $q_3(x_3)$ , we need again to multiply every element of  $\pi_{12}(x_1, x_2)$  with every element of  $q_3(x_3)$ . Since  $\pi_{12}(x_1, x_2)$  has  $L^2$  elements and  $q_3(x_3)$  has  $L$  elements,  $L^2 \times L = L^3$  point-wise multiplications are needed. Extending the above reasoning, we find that  $\sum_{k=2}^u L^k$  multiplications are needed to compute  $f^*(x_1, x_2, \dots, x_u) \prod_{j=1,2,\dots,u \text{ AND } j \neq i} q_j(x_j)$ . After multiplying

the required incoming messages with the local function, we still need to compute the function marginal. Initially, to sum out  $x_u$ , we need to add all possible values of  $x_u$  for all different combinations of  $x_1, x_2, \dots, x_{u-1}$ . Since there are  $L^{u-1}$  combinations for  $x_1, x_2, \dots, x_{u-1}$  and for each combination  $L-1$  additions are required, we need to perform  $L^{u-1} \times (L-1)$  sums. This is repeated with the other variables, till a function of a single argument is derived. This leads to  $\sum_{k=2}^u L^{k-1} (L-1) = L^u - L$  sum. This is only for a single outgoing message; the cost to compute all  $u$  outgoing messages is  $u \sum_{k=2}^u L^k$  multiplications and  $u(L^u - L)$  additions. In brief, the computational cost is  $O(uL^u)$  when  $u \gg 1$ .

We now present a *divide-and-conquer* algorithm to reduce this computational cost. We assume the simple case where the function  $f^*$  in Figure 3 has only 4 arguments:  $x_1, x_2, x_3$  and  $x_4$ . Instead of computing directly  $\{r_i(x_i) i = 1, 2, \dots, 4\}$  from equation (3), we do the following: split all four variables into two groups,  $\{x_1, x_2\}$  and  $\{x_3, x_4\}$ , and compute  $\pi_{12} = q_1(x_1)q_2(x_2)$  and  $\pi_{34} = q_3(x_3)q_4(x_4)$ . Next compute  $\{r_i(x_i) i = 1, 2, \dots, 4\}$  using the revised message-updating equations (4-7):

$$r_1(x_1) = \sum_{x_2} q_2(x_2) \{ \sum_{x_3} \sum_{x_4} (\pi_{34} f^*(x_1, x_2, x_3, x_4)) \} \quad (4)$$

$$r_2(x_2) = \sum_{x_1} q_1(x_1) \{ \sum_{x_3} \sum_{x_4} (\pi_{34} f^*(x_1, x_2, x_3, x_4)) \} \quad (5)$$

$$r_3(x_3) = \sum_{x_4} q_4(x_4) \{ \sum_{x_1} \sum_{x_2} (\pi_{12} f^*(x_1, x_2, x_3, x_4)) \} \quad (6)$$

$$r_4(x_4) = \sum_{x_3} q_3(x_3) \{ \sum_{x_1} \sum_{x_2} (\pi_{12} f^*(x_1, x_2, x_3, x_4)) \} \quad (7)$$

Though  $\sum_{x_3} \sum_{x_4} (\pi_{34} f^*(x_1, x_2, x_3, x_4))$  appears twice in (4) and (5), we actually only need to compute it once. Similarly with the term  $\sum_{x_1} \sum_{x_2} (\pi_{12} f^*(x_1, x_2, x_3, x_4))$ . Doing so saves on the number of actual floating point operations (Flops) needed. The exact number of multiplications needed for this divide-and-conquer algorithm is  $2L^4 + 6L^2$  and the number of additions is  $2L^4 + 2L^2 - 4L$  where  $L$  is the sensors resolution. As the standard sum-product algorithm requires  $4L^4 + 4L^3 + 4L^2$  multiplications and  $4L^4 - 4L$  additions, the divide-and-conquer strategy decreases the computational cost by a factor of two with no loss in accuracy since we only rearrange the order of the multiplications and sums. These arguments are easily generalized to functions with an arbitrary number of variables. Initially, all variables are divided into two subsets as evenly as possible, then each of the two subsets are further split in half as uniformly as possible. This argument is repeated till the number of variables

contained in each subset is one or two. Next, the sums and multiplications are rearranged to let the message-updating equations share the same terms as much as possible. To compute the computational savings is rather long and tedious and will not be detailed here due to lack of space. The conclusion is that the divide and conquer algorithm is faster than the standard sum-product algorithm by a factor of  $\frac{u}{2}$  where  $u$  is the degree of the function node.

An alternative algorithm to reduce the computational cost is *multiply-and-divide*. First, we compute the products of all the incoming messages with the local function using equation (8):

$$\pi = f^*(x_1, \dots, x_u) \prod_{j=1}^u q_j(x_j) \quad (8)$$

After  $\pi$  in equation (8) is known, we update each outgoing message simply using the next equation

$$r_i(x_i) = \frac{1}{q_i(x_i)} \sum_{x_1} \dots \sum_{x_{i-1}} \sum_{x_{i+1}} \dots \sum_{x_u} \pi \quad i = 1, 2, \dots, u$$

Since the same term  $\pi$  is used  $u$  times when updating outgoing messages  $r_i(x_i) i = 1, 2, \dots, u$ , the number of multiplications needed is  $O(2L^u)$  whereas the number of sums needed is still the same as with the standard sum-product algorithm, which is  $O(uL^u)$  when  $u \gg 1$ . In summary, of the three message-updating algorithms discussed the divide-and-conquer strategy is the most computationally efficient.

The analysis above studied the message updating around the function nodes. We next consider the message updating around the variable nodes, as shown in Figure 4. We can show that the multiply-and-divide strategy is now the most efficient. For example, if we let  $v$  denote the degree of the variable nodes and  $L$  the resolution of the variables the multiply-and-divide is  $O(2vL)$  whereas the standard sum-product algorithm has a complexity  $O(v^2L)$ .

#### 4. SIMULATION RESULTS

We apply the divide-and-conquer strategy to update messages around function nodes and the multiply-and-divide strategy when updating messages around variable nodes.

**Experiment I (Convergence Study)** Three sensors and three targets are considered in this experiment. Their relationships are shown in Figure 1. The sensing resolution is set to be  $L = 100$ . The prior probability functions  $\{g_j, j = 1, 2, 3\}$  are uniform distributions while the soft information acquired by the sensors, i.e.,  $\{f_i, i = 1, 2, 3\}$ , is taken to be a mixture of two Gaussians with different means and variances. The fast sum-product algorithm terminates when the mean square difference between the outputs of two successive iterations is less than a preset threshold, or when the running epochs exceed the maximum allowed number of iterations.

