
INTELLIGENT SENSOR FUSION: A GRAPHICAL MODEL APPROACH

José M. F. Moura, Jin Lu, and Marius Kleiner

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

[moura,jinlu]@ece.cmu.edu

ABSTRACT

We study the fusion of data collected by multiple heteroge-
neous sensors that work cooperatively to achieve a common
goal. This paper presents fast algorithms to fuse the sensor
data. We map the problem into a graphical model and then
develop a fast message-passing scheme to fuse the data. We
simulate scenarios with 150 sensors and 200 targets that are
successfully fused.

1. INTRODUCTION

Our work is relevant to many alternative scenarios and ap-
plications. To be speci£c, we focus on the tracking of mul-
tiple, possibly moving, targets by an ad-hoc network of au-
tonomous, expendable sensors.

There are many issues related to the management of
such ad-hoc network of sensors. We deal here with one,
namely, with deriving a fast algorithm to fuse across the
sensors the information extracted by each sensor from their
local data. We do not consider related important issues
that derive from bandwidth, computational, or power con-
straints, [1], that limit the operation of each individual sen-
sor.
Soft decision: Heterogeneous sensors The sensors in the
network may be of different physical types, possibly span-
ning several sensing modalities, e.g., acoustics, electromag-
netic, or infrared; they can be point sensors or arrays of sen-
sors; some may provide high resolution while others only
coarse resolution; some sensors may be omnidirectional,
while others may exhibit some level of directionality. This
heterogeneity raises the issue of how to integrate the data
from such diversity of modalities and resolutions. We fuse
the information provided by the sensors not on the physical
space of their individual measurements, but on the logical
layer of their outputs. For example, to track targets with
seismic sensors, we may move from the pressure or vibra-
tion signals at the front-end to the intermediate (still physi-
cal space) of features (spectral lines), and then to the logical

This work was partially supported by the DARPA ISP Program
through the Army Research Of£ce grant #DAAD19-02-1-0180 and by NSF
through grant # ECS-0225449.

space in the back-end of “soft decisions”—the likelihood
that each target is at a given location, given the physical
measurements. These likelihoods are conditional probabili-
ties.
Probabilistic inference on graphical models Most likely,
individual sensors cannot make a reliable determination re-
garding the position of the targets on their own, but fusion
of the appropriate sensors may provide reliable information
about their locations. Fusing the soft decisions of the sen-
sors is challenging because the sensors are local, survey ar-
eas that are only partially overlapping, have different reso-
lutions and sensing ranges, and may exhibit intricate prob-
abilistic dependencies. To achieve global space awareness,
we need to integrate this disparate soft information into a
coherent global framework. Graphical models are partic-
ularly good at capturing these assorted soft decisions with
diverse interdependencies, [2, 3]. Our goal is to go from
the set of individual sensors’ soft decisions—say the likeli-
hood of M targets being detected, as computed by a given
sensor—to the likelihood of a given target being detected,
based on all sensors relevant to that target. We capture
this integration of local partial views into a probabilistic
inference problem on graphical models. These algorithms
have received much attention in turbo and low density par-
ity check (LDPC) decoding, [4, 5, 6].

2. SENSOR FUSION: INFERENCE IN FACTOR
GRAPHS

To illustrate the approach we develop a simple example of
three targets {Ti, i = 1, 2, 3} being sensed by three sen-
sors {Sj , j = 1, 2, 3}. Sensor S1 measures targets T1 and
T2; sensor S2 detects targets T2 and T3; and, £nally, sen-
sor S3 monitors targets T1 and T3. The above relationships
between sensors and targets are shown in £gure 1. Rather
than outputting only the most probable location of each tar-
get, the sensors provide the probability of the targets being
at each of the different possible locations. This probabilistic
information, soft information, is in the form of a conditional
probability, in our example, p(T1, T2 |S1), p(T2, T3 |S2)
and p(T1, T3 |S3). The function p(Ti, Tj |Sk) stands for the

VI - 7330-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

Fig. 1. Illustrative problem: 3 sensors and 3 targets

conditional probability that targets i and j are at positions Ti
and Tj given the data collected by sensor Sk. The fusion
goal is to derive for each target the conditional probability
of its position based on the data collected by all sensors,
i.e., p(Ti |S1, S2, S3). These p(Ti |S1, S2, S3), i = 1, 2, 3
are the marginal probability functions of the joint probabil-
ity function p(T1, T2, T3 |S1, S2, S3), e.g.,

p(T1 |S1, S2, S3) =
∑

T2,T3

p(T1, T2, T3 |S1, S2, S3). (1)

The problem with the marginalization in (1) is that it is of or-
der O

(
M2LM

)
, where M is the number of targets and L is

the number of resolution beams (assuming all sensors have
similar resolution).

We avoid the direct computation of the joint probabil-
ity p(T1, T2, T3 |S1, S2, S3) and then its marginalization by
computing the marginals through a graphical model called
factor graph. A factor graph is a bipartite graph containing
two types of nodes: variable nodes and function nodes. A
variable node x is connected to a function node f by an edge
if and only if x is an argument of f . This model leads to an
iterative algorithm to compute function marginals. This it-
erative algorithm, the sum-product algorithm, computes the
marginals by passing messages on the factor graph.

To map the problem into the factor graph, we £nd £rst a
multiplicative decomposition of the joint probability func-
tion, usually referred to as the global function to distinguish
it from the functions f that are the local functions. In this
problem, the global function is p(T1, T2, T3 |S1, S2, S3). As-
suming that the targets {Ti, i = 1, 2, 3} are independent
of each other and that the noises in the sensors {Sj , j =
1, 2, 3} are also independent, the global function factors into
a product of six local functions, as shown in equation (2).

p(T1, T2, T3|S1, S2, S3) = (2)

p(T1, T2|S1)
︸ ︷︷ ︸

f1

p(T2, T3|S2)
︸ ︷︷ ︸

f2

p(T1, T3|S3)
︸ ︷︷ ︸

f3

1

p(T1)
︸ ︷︷ ︸

g1

1

p(T2)
︸ ︷︷ ︸

g2

1

p(T3)
︸ ︷︷ ︸

g3

Since we have three variables {Ti, i = 1, 2, 3} ({Sj , j =
1, 2, 3} are just labels, not considered to be variables) and
six local functions {fi, i = 1, 2, 3} and {gj , j = 1, 2, 3},
the factor graph for this problem is composed of 3 variable
nodes and 6 function nodes, as illustrated in £gure 2.

Fig. 2. Factor graph for problem in £gure 1.

3. FAST SUM-PRODUCT ALGORITHM

Fig. 3. Message updating around function node

Fig. 4. Message updating around variable node

The sum-product algorithm is computationally demand-
ing when the degree of the function nodes is high. For a
function node f∗(x1, x2, . . . , xu) connected by u variable
nodes {xi, i = 1, 2, . . . , u} in £gure 3, the task of the
message updating is to compute all the outgoing messages
{ri(xi), i = 1, 2, . . . , u} with respect to all variables xi,
i = 1, 2, . . . , u, i.e., r1(x1), . . . , ru(xu), where

ri(xi) =
∑

x1

· · ·
∑

xi−1

∑

xi+1

· · ·
∑

xu

{f∗
∏

j=1,2,...,uANDj 6=i

qj(xj)} (3)

In equation (3), the symbol qj(xj) denotes the incoming
message transmitted from the variable node xj to the func-
tion node f∗. We assume each variable xi takes L differ-
ent values so the u-argument function f ∗(x1, x2, . . . , xu)
is represented by a u-dimensional array with each dimen-
sion having a resolution of L points. To multiply two in-
coming messages q1(x1) and q2(x2) to generate a L × L

array π12(x1, x2), we need to multiply every element of
the vector q1(x1) with every element of the vector q2(x2).

VI - 734

➡ ➡

Hence, L2 point-wise multiplications are required. In the
subsequent step, to multiply π12(x1, x2) with q3(x3), we
need again to multiply every element of π12(x1, x2) with
every element of q3(x3). Since π12(x1, x2) has L2 ele-
ments and q3(x3) has L elements, L2 × L = L3 point-
wise multiplications are needed. Extending the above rea-
soning, we £nd that

∑u
k=2 L

k multiplications are needed

to compute f∗(x1, x2, . . . , xu)
∏

j=1,2,...,uAND j 6=i

qj(xj). After multiply-

ing the required incoming messages with the local function,
we still need to compute the function marginal. Initially,
to sum out xu, we need to add all possible values of xu
for all different combinations of x1, x2, . . . , xu−1. Since
there are Lu−1 combinations for x1, x2, . . . , xu−1 and for
each combination L− 1 additions are required, we need to
perform Lu−1 × (L − 1) sums. This is repeated with the
other variables, till a function of a single argument is de-
rived. This leads to

∑u

k=2 L
k−1(L − 1) = Lu − L sum.

This is only for a single outgoing message; the cost to com-
pute all u outgoing messages is u

∑u
k=2 L

k multiplications
and u(Lu−L) additions. In brief, the computational cost is
O(uLu) when uÀ 1 .

We now present a divide-and-conquer algorithm to re-
duce this computational cost. We assume the simple case
where the function f∗ in £gure 3 has only 4 arguments: x1,
x2, x3 and x4. Instead of computing directly {ri(xi) i =
1, 2, . . . , 4} from equation (3), we do the following: split
all four variables into two groups, {x1, x2} and {x3, x4},
and compute π12 = q1(x1)q2(x2) and π34 = q3(x3)q4(x4).
Next compute {ri(xi) i = 1, 2, . . . , 4} using the revised
message-updating equations (4-7):

r1(x1)=
∑

x2
q2(x2){

∑

x3

∑

x4
(π34f

∗(x1, x2, x3, x4))} (4)

r2(x2)=
∑

x1
q1(x1){

∑

x3

∑

x4
(π34f

∗(x1, x2, x3, x4))} (5)

r3(x3)=
∑

x4
q4(x4){

∑

x1

∑

x2
(π12f

∗(x1, x2, x3, x4))} (6)

r4(x4)=
∑

x3
q3(x3){

∑

x1

∑

x2
(π12f

∗(x1, x2, x3, x4))} (7)

Though ∑

x3

∑

x4
(π34f

∗(x1, x2, x3, x4)) appears twice in (4)
and (5), we actually only need to compute it once. Similarly
with the term ∑

x1

∑

x2
(π12f

∗(x1, x2, x3, x4)). Doing so saves
on the number of actual ¤oating point operations (Flops)
needed. The exact number of multiplications needed for
this divide-and-conquer algorithm is 2L4 + 6L2 and the
number of additions is 2L4 + 2L2 − 4L where L is the
sensors resolution. As the standard sum-product algorithm
requires 4L4+4L3+4L2 multiplications and 4L4−4L addi-
tions, the divide-and-conquer strategy decreases the compu-
tational cost by a factor of two with no loss in accuracy since
we only rearrange the order of the multiplications and sums.
These arguments are easily generalized to functions with an
arbitrary number of variables. Initially, all variables are di-
vided into two subsets as evenly as possible, then each of
the two subsets are further split in half as uniformly as pos-
sible. This argument is repeated till the number of variables

contained in each subset is one or two. Next, the sums and
multiplications are rearranged to let the message-updating
equations share the same terms as much as possible. To
compute the computational savings is rather long and te-
dious and will not be detailed here due to lack of space. The
conclusion is that the divide and conquer algorithm is faster
than the standard sum-product algorithm by a factor of u

2
where u is the degree of the function node.

An alternative algorithm to reduce the computational
cost is multiply-and-divide. First, we compute the products
of all the incoming messages with the local function using
equation (8):

π = f∗(x1, . . . , xu)

u∏

j=1

qj(xj) (8)

After π in equation (8) is known, we update each outgoing
message simply using the next equation

ri(xi) = 1
qi(xi)

∑

x1
· · ·

∑

xi−1

∑

xi+1
· · ·

∑

xu
π i = 1, 2, . . . , u

Since the same term π is used u times when updating out-
going messages ri(xi) i = 1, 2, . . . , u, the number of mul-
tiplications needed is O(2Lu) whereas the number of sums
needed is still the same as with the standard sum-product
algorithm, which is O(uLu) when u À 1. In summary, of
the three message-updating algorithms discussed the divide-
and-conquer strategy is the most computationally ef£cient.

The analysis above studied the message updating around
the function nodes. We next consider the message updat-
ing around the variable nodes, as shown in £gure 4. We
can show that the multiply-and-divide strategy is now the
most ef£cient. For example, if we let v denote the degree of
the variable nodes and L the resolution of the variables the
multiply-and-divide is O(2vL) whereas the standard sum-
product algorithm has a complexity O(v2L).

4. SIMULATION RESULTS

We apply the divide-and-conquer strategy to update mes-
sages around function nodes and the multiply-and-divide
strategy when updating messages around variable nodes.
Experiment I (Convergence Study) Three sensors and three
targets are considered in this experiment. Their relation-
ships are shown in £gure 1. The sensing resolution is set
to be L = 100. The prior probability functions {gj , j =
1, 2, 3} are uniform distributions while the soft information
acquired by the sensors, i.e., {fi, i = 1, 2, 3}, is taken to be
a mixture of two Gaussians with different means and vari-
ances. The fast sum-product algorithm terminates when the
mean square difference between the outputs of two succes-
sive iterations is less than a preset threshold, or when the
running epochs exceed the maximum allowed number of it-
erations.

VI - 735

➡ ➡

Fig. 5. (a) Fig. 5. (b)

Fig. 5. (c) Fig. 5. (d)

Fig. 5. Convergence study of the fusion algorithm

Figure 5(a) shows the temporary result corresponding
to the target T2 after the £rst iteration, whereas £gures 5(b)
and 5(c) show the temporary results for the target T2 after
the second and the third iteration respectively. Figure 5(d)
is the exact result of for the target T2 when computing the
function marginal directly by marginalization of the joint.
From £gures 5(a)-5(c), we conclude that the sum-product
algorithm converges fast and that the result of the third iter-
ation matches the exact result remarkably well.
Experiment II (Small Sensor Network with High Sens-
ing Resolution) We now consider a network containing 15
sensors surveying 20 targets. The relationship between sen-
sors and targets, i.e., which targets are being sensed by a
speci£c sensor, is randomly generated. Each sensor can de-
tect 4 targets while each target is sensed by 3 different sen-
sors. We choose the sensing resolution L = 50. Again, the
prior probability functions are assumed to be uniform. The
soft information provided by the sensors are four-dimensional
Gaussians with randomly generated mean vector and co-
variance matrix. We report the result for target T4 after 3
iterations. The output p(T4 |S1, S9, S14) is shown as the
solid curve in £gure 6. We also include the probability dis-
tribution functions p(T4 |S1), p(T4 |S9) and p(T4 |S14) de-
picted by the dashed curves. The plot shows that the sensor
network has been successfully integrated. We notice that
the fusion result p(T4 |S1, S9, S14) has a smaller variance.
Experiment III (Large-scale Sensor Network with Low
Sensing Resolution) We have now 150 sensors and 200 tar-
gets. Each sensor can detect 4 targets, while every target is
detected by 3 sensors. All the other settings are the same
as in experiment II except that the sensing resolution is set
to L = 10. The results for the target T3 are provided in

Fig. 6. One of 20 fusion results for experiment II

£gure 7 (solid curve) after 3 iterations. Again, the prob-
ability distribution functions p(T3 |S15), p(T3 |S100), and
p(T3 |S123) are presented by the dashed curves. We £nd
that even though the sensing resolution is low, the resulting
output still fuses the soft information provided by the sensor
network.

Fig. 7. One of 200 fusion results for experiment III
5. REFERENCES

[1] J. M. F. Moura, R. Negi, and M. Pueschel. Distributed sensing
and processing: a graphical model approach. DARPA ACMP
Integrated Sensing and Processing Workshop, Sep. 18/ 2002,
Annapolis, MD.

[2] B. J. Frey. Graphical models for machine learning and digital
comm. MIT Press, Cambridge, MA, 1998.

[3] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Fac-
tor graphs and the sum-product algorithm. IEEE Trans. In-
form. Theory, 47, pp. 498-519, Feb. 2001.

[4] C. Berrou and A. Glavieux. Near Optimum Error Correcting
Coding and Decoding: Turbo codes. IEEE Trans. on Comm.,
44(10), pp. 1261-1271, Oct. 1996.

[5] R. G. Gallager. Low-Density Parity Check Codes. No. 21 in
Res. Monograph Series. Cambridge, MA: MIT Press, 1963.

[6] D. J. C. Mackay. Good Error-Correcting Codes Based on
Very Sparse Matrices. IEEE Trans. on Inform. Theory, 45(2),
pp. 399-431, March 1999.

VI - 736

➡ ➠

