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ABSTRACT

In this paper, we present an analytical approximation
to positive a-stable probability distribution functions,
which in general do not possess a compact analytical
form. Our approximation is based on decomposing a
positive a-stable random variable into a product of a
Pearson and another positive stable random variable.
This decomposition allows one to approximate any pos-
itive stable pdf as a mixture of Pearson densities, hence
providing an analytical representation. This represen-
tation allows one to employ maximum likelihood es-
timation and Bayesian techniques in the presence of
positive a-stable noise or signals. The efficiency of the
decomposition is demonstrated by simulation studies.

1. INTRODUCTION

The a-stable distribution family has received great in-
terest during the last few years in the signal processing
community due to its success in modelling impulsive
data. In particular, it has found applications in areas
such as radar signal processing, financial time series
modelling, telecommunications, and teletraffic modelling
[1].

Despite its popularity as an impulsive noise model,
the other dimension of a-stable distribution, that is its
potential in modelling skewed (unsymmetric) data as
well has been ignored other than a few recent work
[2, 3, 4, 5, 6], and almost all work in the literature con-
centrated on symmetric a-stable (SaS) distributions.
However, many real data show unsymmetric character-
istic which cannot be accommodated by the Gaussian
or symmetric a-stable distributions. Examples include
teletraffic data, financial time-series, geophysical sig-
nals and texture images. With the increasing interest
especially in teletraffic analysis, one needs to address
unsymmetric distributions as well, and skewed a-stable
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distributions provide a flexible framework for modelling
such data.

The lack of an analytical expression for the a-stable
pdf is a major drawback which prevents the utilisation
of standard statistical signal processing techniques such
as maximum likelihood estimation and Bayesian esti-
mation. A partial remedy for the lack of a compact
analytical form for the probability density function was
brought by Kuruoglu et al. [7, 8] who suggested a Gaus-
sian mixture representation for the symmetric a-stable
case. Unfortunately, their representation does not gen-
eralise to the skewed case.

In this paper, we introduce a new analytical rep-
resentation for a special case of the skewed a-stable
pdf that is positive(or negative) a-stable distributions

(8 =+ 1,a < 1). The new model, which we believe is
the first such model in the literature, is interesting in
various aspects: it is not an ad-hoc model and is de-
veloped starting from some basic properties of the a-
stable distribution, it is computationally efficient and
is in the form of a mixture model which provides a
simple parametrisation. The difference from the ana-
lytical model suggested for the symmetric a-stable case
is that the components in the mixture are not Gaussian
kernels but Pearson density functions.

The paper is organised as follows: Section 2 pro-
vides the definition and some basic properties of the
a-stable distribution family which will be exploited in
the following sections. Section 3 introduces the analyt-
ical model based on the Pearson distribution. Section 4
provides simulation studies using the new model. Sec-
tion 5 concludes the text by a discussion of the appli-
cations of the new model.
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Fig. 1. Plots of positive a-stable pdfs for various values
of a.

2. a-STABLE DISTRIBUTIONS

2.1. Definition

The a-stable distribution can be described most con-
veniently by its characteristic function due to the lack
of a compact analytical expression for the pdf. The
characteristic function is simply the Fourier transform
of the pdf.

(1) :{eXP{jut — [t|*[L + jpsign(t) tan(5H)]},if o # 1
exp{jut — y|t|*[1 + jBsign(t) 7 log [t]]}, if a = 1
(1)

where « sets the degree of the impulsiveness of the dis-
tribution. Smaller values of « correspond to heavier
tailed distributions and hence to more impulsive be-
haviour. § is the symmetry parameter that determines
the skewness of the distribution. 8 = 0 corresponds
to a symmetric distribution in which case the distribu-
tion is called symmetric a-stable (Sa.S). -, dispersion,
is the scale parameter. g is the location parameter.

When 8 =+ 1 the pdf is maximally skewed. In addi-
tion if o < 1, the distribution is called positive (neg-
ative) stable and assumes only positive (negative) val-
ues. The Fourier transform of this expression leads to
a compact form only in three special cases, namely the
Gaussian distribution (a = 2), the Cauchy distribution
(e =1, = 0) and the Pearson (or Lévy) distribution
(a=0.5,8=1).

In this paper, we are particularly interested in posi-
tive a-stable case, therefore we give the plots of several
positive a-stable pdfs for various values of a (Fig. 1).

2.2. Decomposition into a Product of Two Other a-
Stable Variables

One can decompose any a-stable random variable into
a product of two other a-stable random variables which
are specified by the following theorem.

Theorem 1: (Hardin [9])

Let Y and X be independent with Y ~ S, (7y,1,0)

and X ~ S, (Vz,02,0) where 0 < o, < 1, and 0 <

a, <2,and a, # 1 # aga,. Then, Z = ylee X
n(a,0

az(’Yz:Bz; ) where a, = Az Oy, B. = m:

_%6 'Yy(1+ﬂ2 tan (amﬂ))ay/2cos(gyw), and
2z7). In the case az <1,if B, €

6 = arctan(f, tan
—1,0,1, then 8, = ;.

Proof: See [9].

There are two important special cases of this the-
orem. The first one is when X is distributed with a
Gaussian distribution (a; = 2,8 = 0) in which case
the equations simplify significantly and one obtaines
the form given in [10], page 20. This special case is
basically the statement of the fact that symmetric a-
stable distributions are conditionally Gaussian. Mo-
tivated by this property, an analytical approximation
was presented in [7, 8] based on scale mixtures of Gaus-
sians.

3. SCALE MIXTURES OF PEARSONS

3.1. The 0 < a < 1/2 case

In this work, we consider another special case of The-
orem 1, that is when X has a Pearson (or Lévy) dis-
tribution, o, = 0.5,8, = 1. The pdf of the Pearson
distribution is given by:

()" rev(5): ®

In this case Theorem 1 becomes:

Corollary 1.1: Let Y and X be independent with
Y ~ Sq,(7y,1,0) and X ~ So.5(7z,1,0) where o, # 2.
Then Z =Y?X ~ S, /2(7:,1,0) where

cos(Z ”)
ay‘lr) .

z = 2% 'Yz ryy cos(
For a given Z, the dispersion of Y is given by

v,  cos(a,m)
. 3
7o cos (55 ©

YTy =
If additionally we choose v, = 1, this equation reduces

to:

v, cos (a,m)
—_—. 4
29%= cos (O‘Z’T) )

Yy =
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Now, call V = Y2, then from pdf conversion for-
mula given by
Theorem 2: ([11] )

dy

v,

If V=g(Y), then fv(v) = fy ()|y-1 ()

we obtain
1
fv(v) —fY(\/E)m- (6)
Next we would like to express the pdf of Z in terms
of the pdfs of X and Y.
Theorem 3:
If Z =VX, then

= [Tt (B e @

Proof: See [12], [11].
Substituting fy (v) from Eq. (6), we obtain:

fz(2) = 1/000 vg%fx (%) fy (Vv)dv. (8)

This is a scale mixture of Pearsons representation
and can be used to obtain great computational advan-
tage in Bayesian estimation problems as discussed later
in the paper.

We can also discretize this integral uniformly to ob-
tain a finite mixture of Pearsons model

= 2 Y b (2) o

v

where K is a normalisation factor depending on the
sampling period.

3.2. The1/2 < a <1 case

The approximation presented above provides a repre-
sentation only for the case 0 < a, < 1/2 since the ex-
pressions are valid only for 0 < ay < 1 and o, = 2.
Ideally one would like to derive similar decompositions
for all values of a, that is 0 < a, < 2. Towards this
end we suggest a modification in the above derivation:
instead of X, choose Z to follow a Pearson distribu-
tion. In that case the new product decomposition can
be envisaged as

1

X =i

(10)

In that case Corollary 1.1 is modified into:
Corollary 1.2.: Let Y and X be independent and YV ~
Sa, (79,1,0) and X ~ Sy /24, (72,1,0) where

1/2a,
vy = V2 cos (47T ) cos (a;ﬂ) 20w (11)

Oy

0<ay<landO0<a; <1 Then, Z ~ Sy5(1,1,0).
We proceed in a manner similar to the derivation
in the previous subsection: Call V = ;/11%, then from

Eq. (6),
fv(v) = agfy (v o~ (12)

Similar to the Eq. (7), we have

@ = [T 1r (B e (3)

Substituting in the above expression for fy (v), we ob-
tain:

fx(z) = aq /00o v 2, (%) fr (v ) dv.  (14)

This is yet another scale mixture of Pearsons model.
One can discretize to obtain a finite mixture of Pear-
sons model:

fx@) = 2 Sy (0 12 (5) (9)

where K is a normalisation factor.

Note that this derivation is not valid for 1 < a, < 2
for which case the expression for 3, from Theorem 1
leads to a term coupled to a, and the theorem looses
generality. Therefore the Pearson mixture model can-
not be generalised to positive a-stable distributions
other than the positive stable case.

4. SIMULATION RESULTS

To demonstrate the efficiency of the approximation, we
obtained a Pearson mixture representation for a pos-
itive stable pdf with a = 04,8 = 1,7y = 1. X in
the decomposition is a Pearson random variable (X ~
So0.5(1,1,0)) and YV ~ S5.4(0.289,1,0). In Fig. 2, we
present the plot of both the actual pdf (obtained by
numerical integration) and of the Pearson mixture ap-
proximation. The approximation is very good: it is
difficult to differentiate the two curves.

In the simulation only 1000 data points were used
and the result was obtained in less than one second
using Matlab on a 2 GHz processor although the code
was not optimised.

5. APPLICATIONS AND CONCLUSIONS

In this paper, we introduced a new analytical repre-
sentation for a special case of the skewed a-stable dis-

+
tribution, when 8 =— 1 and a < 1. To the best of
our knowledge, this is the first such representation sug-
gested in the literature. The model is computationally
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Fig. 2. Actual pdf and the Pearson mixture approxi-

mation to it. a =04,y =1

efficient, it does not require costly algorithms such as

[6]

the expectation-maximization algorithm or Bayesian

estimation. The model is also motivated directly by

some basic properties of a-stable distributions and there- [7]

fore is not ad-hoc. The simulation studies demonstrate

the success of the new representation.
The positive stable distribution, despite recent in-

terest in it [2] is not easily incorporated in inference

schemes because of the non-analytical form of the pdf

which will prevent the likelihood functions from being (8]

evaluated. With the new representation, it is now pos-

sible to employ Bayesian and maximum likelihood esti-

mation techniques in problems involving skewed noise

or signals that can be modelled with a positive sta- [9]

ble distribution. Using the product decomposition into

scale mixtures of Pearson’s, one can obtain the follow-

ing generation mechanism

2t~ P(ytr}/)a

Yt ~ 5204('7?;7 1, 0)

(16) [10]

where P(.) is the Pearson pdf. This inference mecha-
nism, as described in [13], would aid in Markov chain

Monte Carlo (MCMC) and expectation-maximization
(EM) methods involving positive a-stable distributions.

[11]

The model also has potential applications in detec-

tion schemes which employ the pdf of the noise for the

design of receiver nonlinearities.
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