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ABSTRACT

This paper presents a novel approach to parameter es-
timation based on the sample covariance matrix linear pro-
cessing. The originality of this framework relies upon two
facts: firstly, the gaussian assumption about the nuisance
parameters is avoided and, secondly, quadratic feed-forward
schemes are designed saving the complexity and delay of con-
ventional ML-based algorithms that carry out an exhaustive
search throughout the whole parameter range. This second
aim is achieved adopting a Bayesian perspective in which
the parameter of interest is modeled as a random variable
of known a priori distribution. The Bayesian approach allows
us to establish certain optimality criteria (mean squared er-
ror, bias and variance) yielding to estimation schemes with
the best performance on the average, that is, with respect to
the assumed prior of the parameter.

In order to illustrate the proposed theory, we address the
problem of frequency estimation in digital communications.
This example has been chosen because its formulation encom-
passes several problems of special interest such as non-data-
aided open-loop carrier synchronization, direction-of-arrival
estimation in narrow-band uniform linear arrays and, if the
signal is processed in the frequency domain, timing recovery
and time-of-arrival estimation in positioning systems, as well.

1. INTRODUCTION

It is well-known that in low-SNR scenarios, the stochas-
tic (or unconditional) Maximum Likelihood estimator is lo-
cally (nearby a reference value of the unknown parameter)
quadratic on the observed vector y [1][2]. Thus, the ML the-
ory supplies large sample efficient second-order trackers for
the steady-state. However, in general, the optimal estima-
tion scheme is still unknown out of these assumptions. In
particular, when we deal with low-complexity implementa-
tions, efficient estimators may not even exist below a given
SNR threshold due to the so-called outliers [3]. Under these
circunstances, the utilisation of any a priori knowledge about
the unknown parameter can be useful to atenuate the out-
liers effect [4]. From the Bayesian estimation theory, it is
kwnon that the Minimum Mean Squared Error (MMSE) es-
timator is given by the a posteriori mean of the parameter,
conditioned on the observed data [5]. Unfortunately, an an-
alytical expression cannot be normally obtained. Although
other non-linearities could result in better performance, we
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will focus on those estimators processing linearly the sam-
ple covariance matrix R= yyH, which concentrates the in-
stantaneous second-order statistics of the observed vector y.
The reasoning for the quadratic constraint comes from the
fact that it is the smallest (and hence suited for low-SNRs),
affordable non-linearity yielding to a parameter identifiable
problem in spite of the random nuisance parameters [2].

2. SIGNAL MODEL

The received complex envelope in a single carrier per channel
(SCPCQ) system can be represented as follows:

() =D S g b— kD) bwl) ()

k=—o0

where v=w /27T is the carrier frequency error we aim to esti-
mate (normalized to the symbol period T'), ¢ is an arbitrary
random variable setting the phase origin at time ¢t = w/¢,
{cx} is the sequence of zero-mean uncorrelated symbols, g(t)
the shaping pulse and, w(¢) the additive gaussian noise term,
possibly colored due to previous filtering.

Firstly, the received signal is sampled taking samples each
Ts=T/N,, seconds with Ny, the integer oversampling factor.
The signal timing is assumed to be perfectly determined. At
a given time (say t=0, for instance) N consecutive samples
are delivered to the estimator. The vector collecting these
samples y = [y (0),...,y (N — 1)T%)]” can be expressed as:

y=A@)x+w (2)

where x gathers those symbols having contribution in the ob-
served interval (absorbing the phase ambiguity ¢) and A (v)
is the transfer matrix containing the fraction of the shaping
pulses conveying these symbols.

Finally, the parameter of interest v is modeled as a uni-
form random variable in the interval (—A/2, A/2] where the
uncertainty range A < N,s (Nyquist bandwidth) is all the a
priori knowledge the designer has about the value of v.

3. FREQUENCY-OFFSET QUADRATIC
ESTIMATION

According to the introductory discussion, the generic expres-
sion of any second-order estimator is given by:

D= B+Tr {Mﬁ} = B+m'% (3)

where B and M are the estimator coefficients the designer
should select under certain optimality criterion. Note that
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the linear term is omitted due to the symbols zero mean. To
facilitate the estimators deduction, in (3) we have vectorized
M and R so that m =vec{M"} and F=vec{R} where (-)
stands for the transpose conjugate.

First of all, the estimator mean value is a function of the
signal covariance matrix R (v) as indicated below:

E{D}=B+Tr {MR (v)} = B+ m"r (v) (4)
R(v)=A() Af ¥)+Ruw

where r (v) =vec{R (v)} is the vectorization of R (r) and
R,=F {wwH } the noise covariance matrix.

Having in mind (4), next we formulate the estimator bias,
variance and MSE that will be used hereafter to design the
different estimation strategies and assess their performance:
2

BIAS® (v) = | E{p} — v|? = HB+er W) —v

VAR(®) = E[[p~ B {2}* = B [m" ¢ - r (1/))”2
MSE (v) = BIAS? (v) + VAR (v) (5)

Regarding the above equations, we see that the same value
of B minimizes both the bias and the MSE, as the estimator
variance is independent of B. Concretely, if we choose B in
order to minimize the overall bias, BIAS*=E, { BIAS® (v)},
that is, the bias across the whole frequency error range
(weighted by the known prior), we obtain that:

0

ﬁBIAS2 =B+ E{m"r(v) —v}=B+mr=0 (6

where E, {v} =0, r =F, {r (v)} and, thus, (3) becomes:

T —r) (7)

If we operate now the expressions in (5), we obtain that:

7=m

BIAS? (v) = m"” Qpias () m—2Re {mHs (y)} + )2
VAR (v) =m"”" Quar () m (8)

with the following definitions:

s(v)=r({v)v 9)

where B (v)= A" (v) ®A (v) and we have introduced the
modulation fourth-order cumulant matrix K given by:

K=F {vec{X} vec {X}} —wvec{T}vec” {I} =T (10)

where X=xx® and I denotes the identity matrix. It is well-
known that K would vanish if the nuisance parameters were
normally distributed. However, this does not happen, for in-
stance, in digital communications, and matrix K provides the
complete non-gaussian information about the discrete sym-
bols that second-order estimators (3) are able to exploit. In
the case of linear modulations, such as PSK, QAM or, in
general, APSK, matrix K reduces to:

K = (p — 2)diag {vec{I}} (11)

where the p=E{|z;|*}/E*{|x;|*} (Vi) is the fourth- to second-
order moment ratio (specific of the modulation under consid-
eration), and diag(-) converts a vector into a diagonal matrix.

In order to determine the estimators coefficients in m,
we will adopt a Bayesian approach in which the parameter is
a random variable we average with the purpose of deducing
schemes that work properly on average and exploiting the
available statistical knowledge about the unknown parame-
ter (prior). The Bayesian counterparts of the performance
indicators in (5) are given next:

BIAS® = m"” Qyiusm—2Re {mHs} +o2 (12)

VAR=m"Quorm
MSE = BIAS? + VAR = m* Qmnsem—2 Re {mHs} + o2

with
Qbias = B {r (v)r" (y)} -
Quar = By {Quar ()} = B, {RT (v)®R (y)} n
+5, {B()KB" ()}

Qmse = Qbias + Qvar (13)
s=E, {r(v)v}
ot 2B, {1} = 147 (14)

Up to now, the formulation is totally general and will en-
compass any estimation problem following the linear model
stated in section 2. In the case of frequency estimation, the
above matrices (Qbiqs;Quar and s) can be calculated analyt-
ically because of the parameter phasor dependence and the
following equality:

GW)=AW A" (v)=E®v) o G(0) (15)

where ©® stands for the element-wise Hadamard product and
E (v) is defined as:

[E )], = e/ (16)

Having in mind this result, we have that:

Quias = (B, — e ) 0 g(0) 8" (0)
Qur =R @R~ (E"@E) 0 (G" (0)® G (0)) +
+E, ®B (0)KB" (0)
s=es0g (17)

where we have introduced matrices E =FE, {E (v)},
E.=E,{E (v)v}, E,=E, {e(v) et (v)} and its vectorized
versions e =vec {E}, e;=vec{E;}. From (16), analytical
expressions for these matrices are straighforward.

4. BIAS MINIMIZATION

In this section we examine the control the designer has over
the estimator bias. Because of the non-linear relationship
between the parameter and the observed data (16), in general,
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Figure 1: Frequency estimator mean response S(v) as a func-
tion of N for A = Ngs =1

the overall bias in (12) cannot be cancelled out [6]. Then, this
section is devoted to minimizing this bias and evaluating its
magnitude in the case of frequency estimation.

The estimator coefficients m minimizing (12) are readily
obtained from the derivative of BIAS?, concluding that the
equation any estimator m must hold to deliver mimimum-
biased estimates is:

Qbiasm =S (18)

that can be rewritten, after some trivial manipulations, as
follows:

EAGW)SW)} = EAG () v} (19)

where S (v) = m” (r(v) —r) denotes the estimator mean
value (4) as a function of the parameter v. If we look at (19),
it is clear that an unbiased estimator will comply with (18).
Unfortunately, this is not mostly possible and (18) supplies
the least squares fitting of S (v) to the ideal linear response
S (v) = v within the prior domain (i.e., [v| < A/2).

Furthermore, if some elements in G (v) are connected by
an affine transformation, i.e., [G (V)],, ;, = Ca [G (V)],, ;, +
Cy for any value of C,, and C}, the system of equations in (19)
becomes underdetermined and hence Qp;qs is rank-defficient.
Indeed, this is exactly what happens in the frequency estima-
tion case since the diagonals of G (v) share the same phasor
(16). Thus, it is possible to reduce (19) to 2N — 1 equations,
one per diagonal of G(v), as indicated next:

E, {S (l/) ejQwun/N‘ss } =E, {VejQWVn/NSS }

R/2 _ R/2
/ V (f) €™M df = Ny, / e mar(20)
—R/2 —R/2

where n € (=N,N), f=v/Ng, R=A/Ns, is the carrier
uncertainty relative to the Nyquist bandwidth N,s and,
V (f) =Tr{MG (v)} is the Fourier transform of the sequence
v(n) defined next:

v(n)=FT ' {V (f)} = Z M, [GO)], ;. (21)

Notice that in (20) we have taken into account that
S(v) = V(f) — C where C must be null to guarantee the
odd symmetry of the harmonic expansion of f in the right-
hand side of (20).

Thus, equation (20) states that the 2N — 1 central terms
of the discrete Fourier series of Ny f and V(f), filtered in
the interval £ R/2, must be identical in order to minimize the
estimator bias. Ideally, if N were arbitrarily long, (20) would
imply the equalization of S (v) and v within the prior interval
|v| < A/2 or, in other words:

N—-1
V(= lim 3 wm)e N =NLf (22)
n=—N+1

for |f| < R/2, whatever the value of R. However, since N is
finite, the value at which the above Fourier series can be trun-
cated without noticiable distortion is a function of the ratio
R = A/Ns,; the smaller R, the less terms are required for the
same distortion of S (v). In the limit (R — 0), the Taylor ex-
pansion of (22) around f = 0 ensures that N = 2 is sufficient
to hold exactly (22) with v (1) = —v(—1) = iNys/(2m). Oth-
erwise, if (22) is truncated taking too few elements, S (v) will
suffer from ripple and the Gibbs effect, i.e., the overshooting
at the discontinuity points (|v| = £A/2), as shown in Fig. 1
for the most critical situation in which R = 1. The reader
is referred to [6] for additional simulations on the estimator
bias as a function of the parameter R.

Unfortunately, although we had an infinite observation
(N — o0), the non-zero signal bandwidth constitutes another
limitation to the liniarization of S (v). Returning to the def-
inition of v(n) in (21), we see that matrix G (0), whose di-
agonals are composed of the N;s synchronous components of
the shaping pulse autocorrelation (15), acts as a “temporal”
window over the actual sequence v(n). Therefore, the min-
imization of the bias is limited by the effective duration of
this autocorrelation whatever the value of N. Moreover, as
the minimum Nyquist bandwidth in communications is 1/7'
Hz, it follows that the main lobe of the signal autocorrelation
lasts 2/T sec. and, thus, in practice the Fourier series in (22)
becomes truncated approximately at N = Ngs.

5. MINIMUM MSE AND VAR ESTIMATORS

In the previous section the condition to minimize the term
BIAS? in (12) was obtained. Depending on whether we
impose this condition or not, two different solutions can
be deduced. On the one hand, if bias is not acceptable,
among the set of all the estimators holding the minimum
bias constraint in (18), the one minimizing VAR, and hence
MSE =V AR+ min {BIASZ}, is obtained from (12) solving
the following constrained optimization problem:

Mygr = arg min {VAR + (S - Qbiasm)H }‘} =

= Q;alrQbias (QbiasQ;alrQbias)# s = PHS (23)

where the inversion of Quq, is guaranteed if the noise co-
variance matrix R, is positive definite. The minimum-bias
constraint (18) is imposed in (23) by the vector of Lagrange’s
multipliers A. Notice that the Moore-Penrose pseudo-inverse
in (23) provides the minimum-norm solution to the underde-
termined system of equations studied in section 4.

If (23) is plugged into (12), we have that the estimator
minimum bias is given by:

min {BIAS2} =0, —s"Ps =0, —s"Qf s (24)
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Figure 2: MSE for the two estimators deduced in section 5 for
the Minimun Shift Keying (MSK) modulation with N = 6,
Nss =2and A =0.8

as the projection matrix P given by the constrained solution
in (23) can be replaced by any other projector onto the sub-
space of minimum bias generated by matrix Qpiqs-

On the other hand, if the bias constraint is avoidable, the
minimum M SFE estimator and the associated MSE are:

M5 =argmin {MSE} = Ql.s
min {MSE} =02 —s"Q,Ls (25)

The above estimator makes a trade-off between bias and
variance so that it yields biased estimates with the aim of
reducing the estimates variability in those noisy scenarios in
which the variance contribution is dominant.

In figures 2 and 3 the two solutions are compared in terms
of their MSE. In figure 2 we can observe how the second-
order frequency estimators proposed herein suffer from self-
noise at high SNRs due to the frequency-offset uncertainty.
On the contrary, frequency error detectors in closed-loop
schemes were found to be self-noise free [1]. The self-noise
variability precludes the equivalence of both solutions at high
SNRs and, thus, the estimator my,s. can outperform myqy.

On the other hand, if the estimators performance is
evaluated as a function of the observation length N (fig-
ure 3), we observe that, as the variability is averaged out
(limy—oo VAR = 0), both solutions converge and the preva-
lent, systemmatic error is the residual bias (section 4), whose
minimum value is given by:

. 2 Hy#
ngnoo MSE =0, A}inoo s Q7 .S (26)

Consequently, the estimators consistency in terms of MSE
is solely guaranteed if R = A/Nss — 0 (section 4).

6. CONCLUSIONS

In this paper the design and evaluation of quadratic esti-
mators for the problem of frequency error estimation has
been studied. We showed that quadratic unbiased estimators
within the given parameter range do not exist unless the sam-
pling rate is much higher than the maximum frequency error.
Based on classical Fourier analysis, we found that the residual
bias results from the truncation of the harmonic expansion of

MSE

Figure 3: MSE as a function of the observation length ()
for MSK, EsNo=40dB, Ns;s=2 and A = 0.8

the ideal, unbiased estimator mean response within the prior
range. Likewise, the resulting distortion was related to the
signal bandwidth and the aforementioned oversampling.

Depending on whether the minimum-bias constraint is
imposed or not, two Bayesian estimators were deduced that
minimize the average variance and MSE with respect to the
available prior, respectively. Analytical expressions for both
solutions and their performance were provided taking into ac-
count the actual statistics of the nuisance parameters. Sim-
ulations showed that the unconstrained solution outperforms
its competitor as it makes a trade-off between bias and vari-
ance. Moreover, we observed that the performance of the
minimum MSE estimator is bounded by the prior variance in
low-SNR scenarios where the occurrence of outliers is likely.
On the other hand, simulations also showed how second-order
frequency estimators suffer from self-noise at high SNRs due
to the uncertainty of the parameter. Finally, a large sam-
ple study for both solutions pointed out their asymptotical
convergence.
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