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ABSTRACT

We consider semidefinite relaxations of a quadratic optimization
problem with polynomial constraints. Thisisan extension of quad-
ratic problems with boolean variables. Such combinatoria prob-
lems can in general not be solved in polynomial time. Semidefinite
relaxations has been proposed as a promising technique to give
provable good bounds on certain boolean quadratic problems in
polynomial time. We formulate the extensions from boolean vari-
ables to quarternary variables using (¢) apolynomia relaxation or
(74) by using standard semidefinite relaxations of a linear trans-
formation of boolean variables. We analytically compare the two
different approaches of relaxation. The relaxations can al be ex-
pressed as semidefinite programs, which can be solved efficiently
using e.g. interior point methods. Applications of our results in-
clude maximum likelihood estimation in communication systems,
which we explore in simulations in order to compare the quality of
the different relaxations with optimal solutions.

1. INTRODUCTION

In this paper we consider extensions of quadratic problems with
boolean variables. The quadratic problem with boolean constraints
is well-studied in the literature and has important applications in
e.g. graph assignment theory. A boolean quadratic problem has
the form

2T Az — 207z

22 =1,

minimize

subject to @

i=1,...,n

where A = AT € R"*" and b € R". This is a combinatorial

problem which in general cannot be solved in polynomial time. In
this work we investigate semidefinite relaxations of the combina-
torial problem (1) and extensions thereof. The semidefinite relax-
ations yield a bound on the original problem which can be solved
in polynomia time. In special cases the bound is even provable
good.

Although, the combinatorial problems we consider cannot in
genera be solved in polynomia time, for certain combinatorial
quadratic problems the problem complexity grows polynomially
with the problem dimensions. Thisis e.g. the case for minimum-
capacity-cuts for directed graphs or for maximum likelihood esti-
mation in multiuser detection with non-positive crosscorrelations
between waveforms. Both problems can be expressed as quadratic
problems with boolean constraints, see [1] for further references.
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The maximum likelihood application will be explored in more de-
tail in Sec. 4 in our simulations.

We start, however, by reviewing standard resultsfor the boolean
quadratic problem. The boolean problem (1) is difficult to solve
due to the non-convex constraints 2 = 1. Instead we find a lower
bound to the problem (1) using the dual function. The dua prob-
lemis

maximize —17\ — b7 (A + diag()\))T b
subjectto A +diag(\) > 0 @
b€ R(A + diag(}))

inthevariable A € R™. The dual problem is (always) concave and
can in this case be solved as a semidefinite program.

Let f(z) = =7 Az — 207 = denote the primal objective of the
boolean quadratic problem, and let g(A) denote the dual objective
in (2). From weak duality we have that g(A) < f(z). However,
it is well-known that strong duality fails for this problem, so in
genera the dual problem (2) gives a lower bound on the origina
problem (1).

An alternative representation of the dual problem can be ob-
tained by rewriting (2) as

maximize —17z
subject to [_‘2T _0 ] + diag(z) = 0 ©
with the variable z € R*™*. The dual problem of (3) is
minimize Tr X [_?T _Ob]
@

subjectto  X;; =1,
X > 0.

i=1,...,n+1

Slater’s constraint qualification states that strong duality of the
convex problem (3) holds provided there exists a strictly feasible
interior point, which is obviousdly satisfied. Since strong duality
holds, we have that g(A*) = h(X™) where h(X') denotes the ob-
jective of (4), i.e. problem (2) and problem (4) obtain the same
value at their optimal points. We next recast the original boolean
quadratic problem (1) as

minimize Tr X [_fblT _Ob]
] ©)

subjectto X = f [.LT ¢
Xii =1,
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with the additional varisble ¢ € R. Note that for ¢ = 1 the two
formulations (1) and (5) are identical. Then (4) follows from (5)
if we replace the rank-1 constraint by the positive semidefinite re-
laxation X > 0. This gives an interesting interpretation of the
Lagrangian dual problem as a semidefinite rank-relaxation of the
origina problem.

2. RANDOMIZED ROUNDING

If the solution to (4) has rank 1, the optimal solution is read-
ily observed from X*. Otherwise we need to map the solution
back to a boolean vector. In their seminal paper [2] Goemans and
Williamson proposed to perform this mapping using arandomized
agorithm. They generate avector y ~ A/(0, X*) and estimate z;
according to the rule

t=1,....n.

Ti = %n(y‘i):

Under the assumption that the elements of the coefficient ma-

trix (in our case _‘AT 701; ) are al nonnegative, Goemans and
Williams proved that the expected value of the relaxation using
the randomized rounding technique is within 0.878 of the optimal
value.

These results were later extended by Nesterov [3] to the gen-
eral case without assumptions on the coefficient matrix. For this
case Nesterov proved that relative accuracy of the semidefinite re-
laxation is within 0.429 of the optimal solution. Compared to the
0.878 bound by Goemans and Williams the general 0.429 bound
seems discouraging, but in practice this worst-case bound israther
conservative, see simulation resultsin Sec. 4.

To tighten the rel axation the rounding isrepeated several times
and the realization of « that achieves the largest objective of (1) is
chosen as the boolean estimate. The cost of performing the ran-
domized rounding isin most cases insignificant compared to solv-
ing the semidefinite relaxations.

3. HIGHER ORDER POLYNOMIAL CONSTRAINTS

We next consider extensionsto higher order polynomial constraints
of the special form

2" Az — 2Reb*x
=1, i=1,....,n

minimize
subject to ©)
where A = A* € C"*", b € C" and d is a power of two. In
solving (6) we are faced with the same difficulty as for the boolean
problem (1), namely that the problem in non-convex and in general
cannot be solved in polynomial time.

We consider two different semidefinite relaxations of the prob-
lem (6). The two methods can thus be interpreted as a straightfor-
ward extension of the problem (1) to incorporate complex vari-
ables and specia polynomial constraints of the form 4 = 1. The
methods described in the sequel extend to arbitrary values of d, but
becomes notationally cumbersome for higher values. For purpose
of exposition and due to space limitations we limit our discussion
tod = 4.

3.1. Polynomial relaxation

The condtraint 27 = 1 implies that 2; € {-1,1,—4,7}. We
define the auxiliary variable ¢ = 2? so that y? = 1. Thisin

turn impliesthat y; € {-1,+1} and z; € {-1,1,—4,+j}. Let
u = Rex and v = Imz. Then the above conditions are equivalent
to

v, = 1
2
Yi = U~
UV = 0.

We next recast problem (6) in terms of rea variables. For that
purposelet B=ReA,C =ImA,¢c=Rebandd = Imb&. Then
an equivalent formulation using real variablesis

minimize [u” 7] [B _C} [“’] —2[c" d7] [Z]

C B||v
subjectto v —vi =y, i=1,....n
wv;, =0, ¢=1,...,n
yP =1

We obtain a semidefinite relaxation by reformulating the problem
as
e X11 X12 B —C T T Uu
minimize Tr | Xzz] C B ] —2[c" d7] [w]
subjectto  diag (X11) — diag (Xa2) = y
dlag (Xlz) =0

X1 Xi2 I T T
ke MG
diag(Y) =1
Y =yy"

and then relaxing the rank-1 constraints

L X11 X12 B —0 T T u
minimize Tr Xz Xzz] [C B]—Q[c ar]l,

subjectto  diag (X11) — diag (X22) =y
dlag (Xlz) =0
X111 Xi2 wyp T T
e MG
diag(Y) =1
Y = yy'

Thisisturn gives areduced expression for the relaxation as

X1 Xiw2| |B —-C T T |%
minimize Tr [Xsz Xzz] [C B]—Q[c d’] v

-1 < diag(Xi11) — diag (X22) <1
diag (X12) = 0

Xll X12 Uu T T
|:XF2 X22:| t |:1):| [’Ll, v ]

subject to

@)
The dual problem of (7) can be written as
minimize  ||y|lx + 7
B -C ¢ diag(y) diag(w) 0
subject to ¢ B d +[diag(w) diag (v) 0}50
g dT 0 0 0 v
®)

3.2. Affinetransformation

For many polynomial constraints we can express the variables as
an affine transformation of simpler boolean variables. By introduc-
ing such a transformation the problem then reduces to a boolean
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quadratic problem where we can use the standard semidefinite re-
laxation of Sec. 1.
We first recast the problem in terms of real variables as

minimize  [u?  o7] [B _C] [u] —2[L dT] [Z]

C DB||v
subjectto  (u; + v;)? =1,

(w; — 1}i)2 =1,

i=1,...,n
i=1,...,m.

We obtain a semidefinite relaxation by first reformulating the prob-
lem as

minimize Tr [X“ Xlz] [B -¢ -2[" d7] [Z]

X{, X»||C B
. : I I (X X (T T
subjectto  diag ([I _1] [Xsz ng] [I —ID =
11 Xio | T T
X{ Xao| T |0 v

and replacing the rank-1 constraint by a semidefinite constraint

X1 Xuw2| (B -C T 71 (W
minimize Tr [X{‘Fz Xzz] [C B]_2[° d’] v

subjectto  diag (X1 + 2X12 + X22) = 1
dlag (Xu - 2X12 + Xzz) =1

X111 X2 _|u T T

] =Ller o
The constraints obviously imply that diag (Xi2) = 0 sowe get a
reduced semidefinite relaxation

minimize Tr [Xll Xlz] [B _C] -2 dT] [:]

XL Xu||C B
subject to  diag (X11) + diag (X22) =1
diag(X12)=0
X X U
A I
)
which has a dual problem
minimize 17z + v
B -C ¢ diag(z) diag(w) 0
subjectto | C B d| 4 |diag(w) diag(z) 0| = 0.
I dT oo 0 0 v
(10)

At this point it is instructive to compare the relaxation in (7)
with the relaxation in (9). We infer that the relaxation in (9) is
better (tighter) since the constraint

dlag (X]_]_ + X22) =1
is embedded in the larger constraint set
—1 < diag(X11 — X22) < 1.

Thisimportant and interesting relationship isconsistently supported
by our simulations in Sec. 4.2. Comparing the two initial relax-
ations, it is not obvious which is better.

4. MAXIMUM-LIKELIHOOD ESTIMATION

We explore the application of the semidefinite relaxations for max-
imum likelihood estimation for communication systems. The pur-
pose of this investigation is two-fold; it extends previous results

reported in [4, 5] and it gives auseful scenario for testing the qual-
ity of the different relaxations. Polynomial constraints as consid-
ered in Sec. 3 have nice interpretations as different memory-less
modulation schemes, e.g. the constraint = = 1 corresponds to
M-PSK.

In general maximum-likelihood estimation is a very difficult
problem. Here, we consider a single user communication systems
with a time-dispersive propagation channel modeled as a time-
invariant transversal filter. For this specific scenario with lim-
ited channel memory, the optimum solution to the combinatorial
quadratic optimization problem can be obtained in polynomial time
using the classic Viterbi maximum-likelihood sequence estima-
tor [6]. Thisisuseful since it allows us to investigate the qual-
ity of therelaxations for larger problem dimensions with moderate
computational efforts.

4.1. Signal model

We consider the discrete-time signal model
y(t) = H(t)x(t) + v(t) (11)

wherey € C™ isthe observed signal, H € C"*" isthe system
transfer matrix, = € C" is the transmitted signal and v € C™
is an unknown noise or perturbation vector. We assume that = is
an M-PSK signal with 2 = 1 where M is a power of 2. We
make no assumptions on the structure of H and we assume that v
is circularly symmetric zero-mean additive white Gaussian noise
with covariance o”I.

In maximum-likelihood estimation we estimate z(¢) given the
likelihood function of y(t). For ease of notation we drop the time-
dependency in the following. For the simple signal model (11) the
likelihood function takes the form

1 1 )
fly) = mexp{—;”y—ﬁu” }

The maximum likelihood estimation problem is then easily recast
as an equivalent minimization problem

minimize z*H*Hzxz — 2Rey*Hz (12)
subjectto M =1, i=1,...,n.
For A= H*H and b = H"y we have asimilar problem as (6).

4.2. Simulation results

We consider a single-user QPSK communication scenario with
z} = 1 and atypical channel model with a 5 taps, where each
tap is Rayleigh distributed with exponentially decaying powers.
All channel realizations are normalized to unit energy and we con-
sider adata-burst length of 100 symbols.

4.2.1. Tightness of the semidefinite relaxation

We start by investigating the tightness of the semidefinite relax-
ation. Let gq(z) = =" Az — 2Re b™ 2 denote the primal objective
and ¢(X') denote the objective of the relaxations as a function of
X, i.e. the objective of either (7) or (9). We define the relative er-
ror in percent between the optimal quadratic objective ¢(z*) and
the semidefinite relaxation ¢(X™*) as
6(55*7)(*) = 100%_
g(z*)
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In Fig. lawe plot the relative error between the optimal solu-
tion (obtained by the Viterbi algorithm) and standard semidefinite
relaxation of the affine transformation (9) andin Fig. 1b weplot the
relative error between the optimal solution and the polynomial re-
laxation (7). We see that the polynomial relaxation islooser which
supports our claim from Sec. 3.
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Fig. 1. Tightness of relaxations for the constraint 2if = 1 using
the two relaxations in Sec. 3 for a fixed SNR=7dB averaged over
different channel realizations. Top: relative error of affine trans-
formation, Bottom: relative error of the polynomia relaxation.

4.2.2. Bit-error-probability test

We next investigate the average bit-error-probability achieved with
the maximum-likelihood approximation. We use the same chan-
nel model described above where a different channel realization
is chosen for each data-burst of 100 symbols and assumed to be
time-invariant for the duration of a single data-burst. However, we
restrict our attention to the boolean case 27 = 1 instead of the
quaternary case x¥ = 1. We do this to test the original rounding
procedure of Sec. 2. Also, the superior relaxation based on the
affine transformation in Sec. 3.2 is easily rewritten as a standard
boolean problem; thisis not shown here due to space limitations.
The results on the quality of the bounds are thus valid for the relax-
ation in Sec. 3.2. Fig. 1a showsthat the .429 bound by Nestorov is
in fact quite conservative in practice.

Fig. 2 shows the simulated bit-error-probalitities. For refer-
ence we also plot the lowest bound achievable obtained with un-
coded BPSK modulation in the absence of 1S].

5. CONCLUSION

In thiswork we considered extensions of the well-known quadratic
problem with boolean variables. The extensions replace the re-
striction of boolean variables with general polynomial constraints
where we considered the polynomial constraint 2! = 1.

Recent methods based on semidefinite programming are known
to give a provable good bound on the problem solvable in polyno-
mial time using e.g. interior point methods. We considered two
different semidefinite relaxations of the problem with higher di-
mensional constraints. One method applies the standard semidefi-
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Fig. 2. Simulated bit-error-probabilities. 20000 bursts of 100 bits
were demodulated at each SNR. o: BPSK lower bound, O: optimal
ML solution, ¢: thresholded last column of X*, A: 20 randomiza-
tion steps, *: 100 randomization steps.

nite relaxation to an affine transformation of simpler boolean vari-
ables, and another relaxation is based on a semidefinite polynomial
relaxation. For the special cases with z* = 1 we showed that the
polynomial relaxation isin fact afurther relaxation of the semidef-
inite relaxation of the affine transformation. Applications of the
results include maximum-likelihood estimation in communication
systems, where the relaxations offer relatively easily computed ap-
proximations of the global optimum. We investigated this applica-
tion in simulations in order to compare the quality of the different
relaxations.

6. REFERENCES

[1] S. Verd(, Multiuser Detection, Cambridge University Press,
1st edition, 1998.

[2] Michel X. Goemans and David P. Williamson, “Improved Ap-
proximation Algorithms for Maximum Cut and Satisfiability
Problems Using Semidefinite Programming,” J. Assoc. Com+
put. Mach., vol. 42, pp. 1115-1145, 1995.

[3] Y. E. Nesterov, “Semidefinite relaxation and nonconvex
quadratic optimization,” CORE paper, Louvain-la-Neuve,
Belgium, 1997.

[4] W.K.Ma, T. N. Davidson, K. M. Wong, Z. Q. Luo, and P. C.
Ching, *“Quasi-maximum-likelihood multiuser detection us-
ing semidefinite relaxation with application to synchronous
CDMA," |EEE Trans. on Sgnal Processing, vol. 50, no. 4,
pp. 912-922, April 2002.

[5] P H. Tanand L. K Rasmussen, “The application of semidefi-
nite programming for detection in CDMA,” |EEE JSAC, vol.
19, no. 8, pp. 14421449, August 2001.

[6] J. G. Proakis, Digital Communications, McGraw Hill, 3rd
edition, 1995.

[7] S.Boydand L. Vandenberghe, “Convex optimization,” Course
reader.

VI -724




