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ABSTRACT processing and are calledoper (sometimes also circularly

Non-stationary complex random signals are in general im- SYmmetric). On the other hand, ¢fis known, then detec-
proper (not circularly symmetric), which means that their tion iscoherenndcsg(ts, t2) = Ves(t1,t2). This means there
complementary covariance is non-zero. Since the Karhunen€Xists areal sufficient statistic, with no need to use com-
Logve expansion in its known form is only valid for proper Plex algebra. However, that leaves us with everything in be-
processes, we derive the improper version of this expan-tWeen these two limiting cases, e.g., phases that are known
sion. It produces two sets of eigenvalues and an improperW'th some uncertainty (r)on—unlfor.m phase.dlstnbunon) or
internal description. We use the Karhunergke expansion the whole range of adaptive detection techmques. There, the
to solve the problem of detecting non-stationary improper Processs(t) is improper The treatment of improper com-
complex random signals in additive white Gaussian noise. plex processes requires th_e use{\nrﬂely Ilnearrathe_r than
Using the deflection criterion we compare the performance linear transformations. Widely linear transformations also
of conventional processing, which ignores complementary dépend linearly on the conjugate of the vector or process

covariances, with processing that takes these into accountthat they are applied to [1]. _
The performance gain can be as big as a factor of 2. In this paper, we solve the problem of detecting non-
stationary improper complex random signals in white Gaus-

sian noise. The essential tool for the treatment of non-stat-
ionary signals is the Karhunen-gwe (K-L) expansion. Be-

Consider the following communications example. Suppose cause the well-known form of this expansion is only valid

we want to detect aeal waveformx(t) that is transmitted g tht(_a pr(;pelr csaset,_ We?? evelopl thetrllmpropglar ver?gntof tlt n
over a channel that rotates it by some random pigesed ection 2. In section 5 we solve the probiem ot cetecting

adds complex white Gaussian noigg). The observations an improper signal in additive white Gaussian noise. De-
are then given by flection will be used to compare conventional processing,

which ignores complementary covariances, with processing
r(t) = x(t)ei"’+ n(t), (1) that takes these into account. We find that widely linear pro-

cessing of improper processes promises gains up to a factor
and we shall assume mutual independencétf n(t), and of 2.
@. Furthermore, denote the rotated signablty = x(t)el®.
Its covariance is given bysg(t1,t2) = Ex(t1)x(t2). In gen-
eral,yss(t1,t2) does not give a complete second-order char-
acterization of§(t). It must be complemented by them-  1,q (405 required for dealing with improper complex sig-
ple_r2r1entary covariances(t, t2) = Es(t1)s(tz) =Ex(t1)X(t2)  nals have been presented in a unified framework for the vec-
Ee . ) ) tor and WSS cases in [2]. The basic ideas carry over to a

There are, of course, two important special cases. If hon_stationary setting. The advocated algebra is based on

the phasepis uniformly distributed, then detection mon- augmented signais(t) = [s(t) s*(t)] T that carry along their

coheren@ndcsgts,t2) = 0. Processes that have a vanishing ¢qnjygate. Their covariance matrix is called thegmented
complementary covariance play an important role in signal .,y ariance matrisand is given by

1. INTRODUCTION

2. THE KARHUNEN-LO EVE EXPANSION
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The augmented covariance matrix gives a complete second- Because the proof of the theorem is long, it is relegated
order description of the signal. It belongs to a matrix algebra to the Appendix. This theorem is the continuous-time equiv-
alent of the finite-dimensional eigenvalue decomposition for

W { [hi(tl,tZ) hi(tl,tZ)] ‘thz € L2([0,T]2 - ([)}, the improper case presented as Proposition 1 in [2]. The
h3(t1,tz)  hi(ty,t2) main differences between the proper and improper version

of this theorem are that there are two sets of eigenvalues

{AL}, {AL}, and the K-L coefficients, are improper. In

the proper casessg(t1,t2) = 0, the two eigenvalues], and

AL are equal, the K-L coefficients become proper, and the

functionsyi(t) = 0Vn. Then the K-L expansion simplifies

to the known formulas.

which is closed under addition, multiplication, inversion (if
inverses exist), and multiplication with a real, but not with
a complex scalar. The notatiarf([0,T]2 — €) will stand
for square-integrable functions defined[0riT | x [0, T| that
take their values in the complex field. When we apply a
member of7/’ to an augmented signal, we obtain a widely 14 gain more insight into the role of the two sets of
linear transformation [1]. eigenvalues, let us return to the communications example of
Now, Mercer's Theorem and the K—L expansion forim-  the introduction. In non-coherent detectiagg(ts,t;) = 0
proper complex signals can be stated as follows. and the eigenvalues that belonggo) satisfy Al = Al =
Theorem.Suppose thai(t), 0 <t <T, is azero-mean )\ = On the other hand, in the coherent casg(t;,t;) =
second-order complex random process characterized by coy,t, t,) and the eigenvalues that belongstt) satisfyAl, =
varianceyss(ts, t2) and complementary covariancg(ts,t2), 2\, andAi, = 0. Therefore, the coherent case is the most
which are both continuous d, T]2. Then the augmented improper case under the power constraifjt- Ai, = 2\,
covariancd g0 (t1,t2) can be expanded in the uniformly and  These comments are clarified by noting that
absolutely convergent series _
INT—E{s(t)Res,}, A =E{s(t)ims,}.
Fooltit) = 3 Palt A (1) 2An = E{s(t)Resn}, 3An=E{s(t)imsn}
n Thus, A, measures the correlation between the real part of
the internal representation and the continuous-time signal,
LI AT AL and)'\in does so for the imaginary.part. In the non-cohere'nt
An=3 |:)\r AL +)\i] version of (1), these two correlations are equal, suggesting
noono e that the information is carried equally in real and imaginary
involves two non-negative eigenvaluésand\l,. The ma- part ofs,. In the coherent version, = 2\,, Al, = 0 shows

where

trix that the information is carried exclusively in the real part of
Ou(t) = ()  Wn(t) sh, makingRes, asufficient statistidor the decision oms(t).
. Wn(t)  @i(t) Therefore, in the coherent problem, widely linear process-

ing amounts to only considering the real part of the inter-
T nal description. The more interesting applications of widely
/o Dn(t)Dra(t) dt = 1 S linear filtering, however, lie either in between the coher-
ent and non-coherent case, characterized by a non-uniform
The matrices\, and®;(t) are found as the solutions to the  phase-distribution, or in adaptive realizations of coherent al-
equation gorithms. For further discussion of applications of widely
linear filtering in communications refer to [2].

satisfies

)
@ (t)An = /0 F oo (tr, t2)®n(t2) dty.

3. DETECTION
Thens(t) can be represented by the mean-square convergent ) ) ) )
series The detection problem we would like to solve is a simple
hypothesis test:
ot) =Y ®,(t)on, < s(t) = t)sh+ Wn(t)s:,
(t) ; n(t)on (t) Z(pn( )Sn+Wn(t)s, Ho : r(t) = n(t) @
where Hi:r(t) =s(t)+n(t)
T T We observe the complex signalt) over the time interval
oh=[ ®fHot)dtes, (Gh(t)s(t) +Wn(t)s*(t))dt.  0<t<T. The noisen(t) is zero-mean complex white
0 0 (i.e., proper) Gaussian with power spectral denkigyand
The K-L coefficients, satisfy the zero-mean complex Gaussian sigttl is described by
' . its covarianceyss(ty,t2) and its complementary covariance
E(ss) = 3(Ah+An)3m,  E(S8m) = 53 (AL —Ay)3nm. Cos(ta, t2).
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3.1. Solution of the Detection Problem Let us determine the deflection for the two limiting cases

, . . . . in the communications example (1). In the coherent prob-
The first step is to determine the K—L expansion for the sig- ple (1) P

o ) lem, using th i ffici =hpo = 50—,
nal s(t) as shown above. The K-L coefficiergsare im- em, using the optimum coe icientss = Mn2 = o %
: . the deflection is
proper complex Gaussian random variables \Eitk,sy,) = )
3 (AL +A})8hm andE (snsm) = 3 (AL, — A,)3nm, and the reso- ) (Zn 2)\%2N )
lution of the observed signalt) onto the K—L basis func- D(LR) = = 7"*02 (5)
tions is denoted by No s ( )
n 2)\n+N0
On the other hand, if we were to completely ignore the in-
= (t) + Wn(t)re(t)) dt. : - :
formation contained in the complementary covariance, de-

The log-likelihood ratio is then determined by tectlon would be non-coherent and the coefficieits =

)\n+No’ hi, 2 = 0, would only give us a deflection of
)\r)\l NO(}\r+>\I) |r |2 2 2
Z No()\r)\'n—i-No()\r + A )+NO) " D/(L ) 1 (Zn )\n)J\rNO) ©)
R)— (w5 -
Nlhnl No >n ( )2
o )\n+No
%()‘E —Ab) 2 The ratioD ! [ isi i-
+— : Rer (Lr)/D’(LR) is at most 2, and this is asymptoti
AL +No(AL +AL) +N2 " cally the case for eithé¥g — 0 or Ny — 0. This 3 dB result
1 is certainly not surprising for the comparison of coherent
N M2 vs. non-coherent detection in the communications exam-
1 . ple of (1). However, at this point, we conjecture without
:N—ORe (; Shr”) ’ ®) proof that this factor of 2 is also thmaximunmperformance
gain possible in any Gauss-Gauss detector that incorporates
with knowledge of complementary covariances (see [4] for more
& =hnarn+hnorp. details).

A derivation and more detailed discussion of this formula
can be found in [4]. It is interesting to note that the widely 4. CONCLUSIONS

linear detector (3) also takes on the form of an estimator— . .
®) | Wn(t) = 0Vn, and We have presented a version of the Karhunegssoexpan-
n = ’

correlator. Ifs(t) is proper, thel, = A}, ion for i | d ionals. It prod
(3) simplifies to the known result sion for improper complex random signals. It produces an
improper internal description and two sets of eigenvalues.
) We have used the K-L expansion to solve the problem of
Lr= No z An + No [Fal*. dptecting non—st{;\tiona_ry improper r.andom signals in add_i—
tive white Gaussian noise. The maximum performance gain
An equivalent time-frequency formulation of (3) is derived of widely linear vs. strictly linear processing as measured

in [3]. by deflection is a factor of 2 [4]. In a communications exam-
ple, we have linked the two situations that display this max-
3.2. Performance imum performance difference to coherent detection (perfect

phase knowledge) and non-coherent detection (no phase in-
To evaluate the performance of the detector, we use the deformation). Widely linear processing, however, can cover

flection criterion, which is defined as any situation in between, whesmmephase knowledge is
5 available, as well as adaptive realizations of coherent de-
D(Lg) (E1(Lr) —Eo(Lr))" tection [2]. A time-frequency perspective of detection of
Vo(LR) improper signals is developed in [3].

HereE;(-) denotes expectation under hypothésandvy(-)
variance under hypothesis zero. The deflection can be re-
garded as an output signal-to-noise ratio. It can be com-

5. APPENDIX: PROOF OF MERCER'S THEOREM
AND K-L EXPANSION IN THE IMPROPER CASE

puted to be Let €2 be the image oR? under the unitary map with ma-
trix
1 B2 (AR 4 AL) 4 hn 2 (AL — AL i
T aNg So(2, 12, NALES
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The space of augmented signals consists of square-integrable From (7) itis not clear how the improper version of Mer-
functions[0, T] — €2 and is denoted by2([0,T] — C?). cer’s theorem is connected to its proper version. To make
This space is not linear (rather it is widely linear), but it is this connection apparent, we re-write (7) as

isomorphic to the space of square-integrable njaps| —

IR?. This isomorphism enables us to write down the K—L Mooty t2) =

expansion for an augmented signal, using the results of [5] H Aon 0 H

for vector random processes. Let the assumptions be as in " Z ([#2n(t), 02nsa(t)]T7) (T [ 0 AzMJ T ) X

the statement of the theorem. Then the augmented covari- o4 (t)
ancel g5 (t1,t2) can be expanded in the series X ( [ 2nft2) D
¢2n+1 (t2)
Foo(ty,to) = zAn% )5 (t), ) _ Z [ @n(ty) tl):| E Aon+A2ns1) %()\Zn )\2n+l)] y
CWnt) @t ] [3(Aon—A2ni1)  5(Aon+Azni1)
where{An} are the non-negative scalar eigenvalues and the % [@] tz Wn(t2) }
{®,(t) =[fa(t), f(t)]T} are the corresponding orthonormal Wh(t2)  n(t2)
eigenfunctions. Each,(t) is L?([0,T] — €?). Eigenvalues z n(t)An®H (t2).
and eigenfunctions are obtained as solutions to the integral T

equation Thus, the internal representation is now givendmynplex

K-L coefficientss, = %(xzn + jxant1) and

G — S X2n ¢H
: : " s) X2n+1
where the eigenfunctiong,,(t) form a complete orthonor-
mal set forL2([0,T] — €?), For these coefficients we find because of (9)

;
Ao (ts) = /0 Foo(tn,t)b,(t)dt, O<ty<T,

E(snsm) :% [E(XanX2m) — E(Xen+1%em+1)
+ J(E(X2nXom+1) + E(Xont-1%om) )]

T T
[ o8 émtdt=2Re [ G0 in()dt=8m (&)
0 0

_1

Thens(t) can be represented by the mean-square convergent =3 (A2n = A2n+1)0nm
series and, similarly,E(s\s},) = 2()\2n+)\2n+1)6nm If we now

. . agree on the defmmon?s{1 Aon, )\n = Aona1, the proof is

O(t) = 3 Xabn(t) < S0 = ¥ XTa(t), Somnloto.
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