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ABSTRACT

Non-stationary complex random signals are in general im-
proper (not circularly symmetric), which means that their
complementary covariance is non-zero. Since the Karhunen-
Loève expansion in its known form is only valid for proper
processes, we derive the improper version of this expan-
sion. It produces two sets of eigenvalues and an improper
internal description. We use the Karhunen-Loève expansion
to solve the problem of detecting non-stationary improper
complex random signals in additive white Gaussian noise.
Using the deflection criterion we compare the performance
of conventional processing, which ignores complementary
covariances, with processing that takes these into account.
The performance gain can be as big as a factor of 2.

1. INTRODUCTION

Consider the following communications example. Suppose
we want to detect areal waveformx(t) that is transmitted
over a channel that rotates it by some random phaseφ and
adds complex white Gaussian noisen(t). The observations
are then given by

r(t) = x(t)ejφ +n(t), (1)

and we shall assume mutual independence ofx(t), n(t), and
φ. Furthermore, denote the rotated signal bys(t) = x(t)ejφ.
Its covariance is given byγss(t1, t2) = Ex(t1)x(t2). In gen-
eral,γss(t1, t2) does not give a complete second-order char-
acterization ofs(t). It must be complemented by thecom-
plementary covariancecss(t1, t2)= Es(t1)s(t2)= Ex(t1)x(t2)·
Eej2φ.

There are, of course, two important special cases. If
the phaseφ is uniformly distributed, then detection isnon-
coherentandcss(t1, t2)≡ 0. Processes that have a vanishing
complementary covariance play an important role in signal
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processing and are calledproper(sometimes also circularly
symmetric). On the other hand, ifφ is known, then detec-
tion iscoherentandcss(t1, t2) = γss(t1, t2). This means there
exists areal sufficient statistic, with no need to use com-
plex algebra. However, that leaves us with everything in be-
tween these two limiting cases, e.g., phases that are known
with some uncertainty (non-uniform phase distribution) or
the whole range of adaptive detection techniques. There, the
processs(t) is improper. The treatment of improper com-
plex processes requires the use ofwidely linearrather than
linear transformations. Widely linear transformations also
depend linearly on the conjugate of the vector or process
that they are applied to [1].

In this paper, we solve the problem of detecting non-
stationary improper complex random signals in white Gaus-
sian noise. The essential tool for the treatment of non-stat-
ionary signals is the Karhunen-Loève (K–L) expansion. Be-
cause the well-known form of this expansion is only valid
in the proper case, we develop the improper version of it in
Section 2. In Section 3 we solve the problem of detecting
an improper signal in additive white Gaussian noise. De-
flection will be used to compare conventional processing,
which ignores complementary covariances, with processing
that takes these into account. We find that widely linear pro-
cessing of improper processes promises gains up to a factor
of 2.

2. THE KARHUNEN-LO ÈVE EXPANSION

The tools required for dealing with improper complex sig-
nals have been presented in a unified framework for the vec-
tor and WSS cases in [2]. The basic ideas carry over to a
non-stationary setting. The advocated algebra is based on
augmented signalsσσσ(t) = [s(t) s∗(t)]T that carry along their
conjugate. Their covariance matrix is called theaugmented
covariance matrixand is given by

ΓΓΓσσ(t1, t2)=E

[
s(t1)
s∗(t1)

]
[s∗(t2),s(t2)]=

[
γss(t1, t2) css(t1, t2)
c∗ss(t1, t2) γ∗ss(t1, t2)

]
.
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The augmented covariance matrix gives a complete second-
order description of the signal. It belongs to a matrix algebra

W =
{[

h1(t1, t2) h2(t1, t2)
h∗2(t1, t2) h∗1(t1, t2)

]∣∣∣∣h1,h2 ∈ L2([0,T]2 → CI )
}

,

which is closed under addition, multiplication, inversion (if
inverses exist), and multiplication with a real, but not with
a complex scalar. The notationL2([0,T]2 → CI ) will stand
for square-integrable functions defined on[0,T]× [0,T] that
take their values in the complex field. When we apply a
member ofW to an augmented signal, we obtain a widely
linear transformation [1].

Now, Mercer’s Theorem and the K–L expansion for im-
proper complex signals can be stated as follows.

Theorem.Suppose thats(t), 0≤ t ≤ T, is a zero-mean
second-order complex random process characterized by co-
varianceγss(t1, t2) and complementary covariancecss(t1, t2),
which are both continuous on[0,T]2. Then the augmented
covarianceΓΓΓσσ(t1, t2) can be expanded in the uniformly and
absolutely convergent series

ΓΓΓσσ(t1, t2) = ∑
n

ΦΦΦn(t1)ΛΛΛnΦΦΦH
n (t2).

where

ΛΛΛn = 1
2

[
λr

n +λi
n λr

n−λi
n

λr
n−λi

n λr
n +λi

n

]

involves two non-negative eigenvaluesλr
n andλi

n. The ma-
trix

ΦΦΦn(t) =
[

φn(t) ψn(t)
ψ∗n(t) φ∗n(t)

]

satisfies Z T

0
ΦΦΦn(t)ΦΦΦH

m(t)dt = I δnm.

The matricesΛΛΛn andΦΦΦn(t) are found as the solutions to the
equation

ΦΦΦn(t1)ΛΛΛn =
Z T

0
ΓΓΓσσ(t1, t2)ΦΦΦn(t2)dt2.

Thens(t) can be represented by the mean-square convergent
series

σσσ(t) = ∑
n

ΦΦΦn(t)σσσn ⇔ s(t) = ∑
n

φn(t)sn +ψn(t)s∗n,

where

σσσn =
Z T

0
ΦΦΦH

n (t)σσσ(t)dt⇔ sn =
Z T

0
(φ∗n(t)s(t)+ψn(t)s∗(t))dt.

The K–L coefficientssn satisfy

E(sns∗m) = 1
2(λr

n +λi
n)δnm, E(snsm) = 1

2(λr
n−λi

n)δnm.

Because the proof of the theorem is long, it is relegated
to the Appendix. This theorem is the continuous-time equiv-
alent of the finite-dimensional eigenvalue decomposition for
the improper case presented as Proposition 1 in [2]. The
main differences between the proper and improper version
of this theorem are that there are two sets of eigenvalues
{λr

n}, {λi
n}, and the K–L coefficientssn are improper. In

the proper case,css(t1, t2) ≡ 0, the two eigenvaluesλr
n and

λi
n are equal, the K–L coefficients become proper, and the

functionsψn(t)≡ 0∀n. Then the K–L expansion simplifies
to the known formulas.

To gain more insight into the role of the two sets of
eigenvalues, let us return to the communications example of
the introduction. In non-coherent detection,css(t1, t2) ≡ 0
and the eigenvalues that belong tos(t) satisfy λr

n = λi
n =

λn. On the other hand, in the coherent case,css(t1, t2) =
γss(t1, t2) and the eigenvalues that belong tos(t) satisfyλr

n =
2λn andλi

n = 0. Therefore, the coherent case is the most
improper case under the power constraintλr

n + λi
n = 2λn.

These comments are clarified by noting that

1
2λr

n = E{s(t)Resn}, j
2λi

n = E{s(t)Imsn}.

Thus,λr
n measures the correlation between the real part of

the internal representation and the continuous-time signal,
andλi

n does so for the imaginary part. In the non-coherent
version of (1), these two correlations are equal, suggesting
that the information is carried equally in real and imaginary
part ofsn. In the coherent version,λr

n = 2λn, λi
n = 0 shows

that the information is carried exclusively in the real part of
sn, makingResn asufficient statisticfor the decision ons(t).
Therefore, in the coherent problem, widely linear process-
ing amounts to only considering the real part of the inter-
nal description. The more interesting applications of widely
linear filtering, however, lie either in between the coher-
ent and non-coherent case, characterized by a non-uniform
phase-distribution, or in adaptive realizations of coherent al-
gorithms. For further discussion of applications of widely
linear filtering in communications refer to [2].

3. DETECTION

The detection problem we would like to solve is a simple
hypothesis test:

H0 : r(t) = n(t) (2)

H1 : r(t) = s(t)+n(t)

We observe the complex signalr(t) over the time interval
0 ≤ t ≤ T. The noisen(t) is zero-mean complex white
(i.e., proper) Gaussian with power spectral densityN0, and
the zero-mean complex Gaussian signals(t) is described by
its covarianceγss(t1, t2) and its complementary covariance
css(t1, t2).
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3.1. Solution of the Detection Problem

The first step is to determine the K–L expansion for the sig-
nal s(t) as shown above. The K–L coefficientssn are im-
proper complex Gaussian random variables withE(sns∗m) =
1
2(λr

n +λi
n)δnm andE(snsm) = 1

2(λr
n−λi

n)δnm, and the reso-
lution of the observed signalr(t) onto the K–L basis func-
tions is denoted by

rn =
Z T

0
(φ∗n(t)r(t)+ψn(t)r∗(t))dt.

The log-likelihood ratio is then determined by

LR =∑
n

λr
nλi

n + N0
2 (λr

n +λi
n)

N0(λr
nλi

n +N0(λr
n +λi

n)+N2
0)︸ ︷︷ ︸

1
N0

hn,1

|rn|2

+
1
2(λr

n−λi
n)

λr
nλi

n +N0(λr
n +λi

n)+N2
0︸ ︷︷ ︸

1
N0

hn,2

Rer2
n

=
1

N0
Re

(
∑
n

ŝ∗nrn

)
, (3)

with
ŝn = hn,1rn +hn,2r∗n.

A derivation and more detailed discussion of this formula
can be found in [4]. It is interesting to note that the widely
linear detector (3) also takes on the form of an estimator–
correlator. Ifs(t) is proper, thenλr

n = λi
n, ψn(t)≡ 0∀n, and

(3) simplifies to the known result

LR =
1

N0
∑
n

λn

λn +N0
|rn|2.

An equivalent time-frequency formulation of (3) is derived
in [3].

3.2. Performance

To evaluate the performance of the detector, we use the de-
flection criterion, which is defined as

D(LR) =
(E1(LR)−E0(LR))2

V0(LR)
.

HereEi(·) denotes expectation under hypothesisi, andV0(·)
variance under hypothesis zero. The deflection can be re-
garded as an output signal-to-noise ratio. It can be com-
puted to be

D(LR) =
1

4N2
0

·
(
∑nhn,1(λr

n +λi
n)+hn,2(λr

n−λi
n)

)2

∑n(h2
n,1 +h2

n,2)
. (4)

Let us determine the deflection for the two limiting cases
in the communications example (1). In the coherent prob-
lem, using the optimum coefficientshn,1 = hn,2 = λn

2λn+N0
,

the deflection is

D(LR) =
2

N2
0

·

(
∑n

λ2
n

2λn+N0

)2

∑n

(
λn

2λn+N0

)2 . (5)

On the other hand, if we were to completely ignore the in-
formation contained in the complementary covariance, de-
tection would be non-coherent and the coefficientsh′n,1 =

λn
λn+N0

, h′n,2 = 0, would only give us a deflection of

D′(LR) =
1

N2
0

·

(
∑n

λ2
n

λn+N0

)2

∑n

(
λn

λn+N0

)2 . (6)

The ratioD(LR)/D′(LR) is at most 2, and this is asymptoti-
cally the case for eitherN0→ 0 or N0→∞. This 3 dB result
is certainly not surprising for the comparison of coherent
vs. non-coherent detection in the communications exam-
ple of (1). However, at this point, we conjecture without
proof that this factor of 2 is also themaximumperformance
gain possible in any Gauss-Gauss detector that incorporates
knowledge of complementary covariances (see [4] for more
details).

4. CONCLUSIONS

We have presented a version of the Karhunen-Loève expan-
sion for improper complex random signals. It produces an
improper internal description and two sets of eigenvalues.
We have used the K–L expansion to solve the problem of
detecting non-stationary improper random signals in addi-
tive white Gaussian noise. The maximum performance gain
of widely linear vs. strictly linear processing as measured
by deflection is a factor of 2 [4]. In a communications exam-
ple, we have linked the two situations that display this max-
imum performance difference to coherent detection (perfect
phase knowledge) and non-coherent detection (no phase in-
formation). Widely linear processing, however, can cover
any situation in between, wheresomephase knowledge is
available, as well as adaptive realizations of coherent de-
tection [2]. A time-frequency perspective of detection of
improper signals is developed in [3].

5. APPENDIX: PROOF OF MERCER’S THEOREM
AND K–L EXPANSION IN THE IMPROPER CASE

Let CI 2
∗ be the image ofIR2 under the unitary map with ma-

trix

T =
1√
2

[
1 j
1 − j

]
.
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The space of augmented signals consists of square-integrable
functions[0,T] → CI 2

∗ and is denoted byL2([0,T] → CI 2
∗).

This space is not linear (rather it is widely linear), but it is
isomorphic to the space of square-integrable maps[0,T]→
IR2. This isomorphism enables us to write down the K–L
expansion for an augmented signal, using the results of [5]
for vector random processes. Let the assumptions be as in
the statement of the theorem. Then the augmented covari-
anceΓΓΓσσ(t1, t2) can be expanded in the series

ΓΓΓσσ(t1, t2) = ∑
n

λnϕϕϕn(t1)ϕϕϕ
H
n (t2), (7)

where{λn} are the non-negative scalar eigenvalues and the
{ϕϕϕn(t) = [ fn(t), f ∗n (t)]T} are the corresponding orthonormal
eigenfunctions. Eachϕϕϕn(t) is L2([0,T]→ CI 2

∗). Eigenvalues
and eigenfunctions are obtained as solutions to the integral
equation

λnϕϕϕn(t1) =
Z T

0
ΓΓΓσσ(t1, t2)ϕϕϕn(t2)dt2, 0≤ t1 ≤ T,

where the eigenfunctionsϕϕϕn(t) form a complete orthonor-
mal set forL2([0,T]→ CI 2

∗),Z T

0
ϕϕϕH

n (t)ϕϕϕm(t)dt = 2Re
Z T

0
f ∗n (t) fm(t)dt = δnm. (8)

Thens(t) can be represented by the mean-square convergent
series

σσσ(t) = ∑
n

xnϕϕϕn(t)⇔ s(t) = ∑
n

xn fn(t),

where

xn =
Z T

0
ϕϕϕH

n (t)σσσ(t)dt = 2Re
Z T

0
f ∗n (t)s(t)dt.

The surprising result here is that the K–L coefficientsxn are
not only scalars, but they are actuallyreal with correlation

E xnxm = λnδnm. (9)

The reason for this lies in (8). This equation shows that the
functions fn(t) do not have to be orthogonal inL2([0,T]→
CI ) to ensure that the eigenfunctionsϕϕϕn(t) be orthogonal in
L2([0,T]→ CI 2

∗). In fact, it is clear that in general there are
more orthogonal augmented functions inL2([0,T] → CI 2

∗)
than there are orthogonal functions inL2([0,T] → CI ). In
other words, we were able to reduce the dimension of the
internal description (real rather than complex K–L coeffi-
cients) becauseL2([0,T]→CI 2

∗) allows an increased number
of orthonormal eigenfunctions compared toL2([0,T]→ CI ).
This increase in eigenfunctions is not clearly visible since
in both cases we have infinitely many.

From (7) it is not clear how the improper version of Mer-
cer’s theorem is connected to its proper version. To make
this connection apparent, we re-write (7) as

ΓΓΓσσ(t1, t2) =

= ∑
n

(
[ϕϕϕ2n(t1),ϕϕϕ2n+1(t1)]T

H
)(

T
[

λ2n 0
0 λ2n+1

]
TH

)
×

×
(

T
[

ϕϕϕH
2n(t2)

ϕϕϕH
2n+1(t2)

])

= ∑
n

[
φn(t1) ψn(t1)
ψ∗n(t1) φ∗n(t1)

][1
2(λ2n +λ2n+1) 1

2(λ2n−λ2n+1)
1
2(λ2n−λ2n+1) 1

2(λ2n +λ2n+1)

]
×

×
[

φ∗n(t2) ψn(t2)
ψ∗n(t2) φn(t2)

]

= ∑
n

ΦΦΦn(t1)ΛΛΛnΦΦΦH
n (t2).

Thus, the internal representation is now given bycomplex
K–L coefficientssn = 1√

2
(x2n + jx2n+1) and

σσσn =
[
sn

s∗n

]
= T

[
x2n

x2n+1

]
=
Z T

0
ΦΦΦH

n (t)σσσ(t)dt.

For these coefficients we find because of (9)

E(snsm) =1
2[E(x2nx2m)−E(x2n+1x2m+1)
+ j(E(x2nx2m+1)+E(x2n+1x2m))]

=1
2(λ2n−λ2n+1)δnm

and, similarly,E(sns∗m) = 1
2(λ2n + λ2n+1)δnm. If we now

agree on the definitionsλr
n , λ2n, λi

n , λ2n+1, the proof is
complete.
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