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ABSTRACT
A Time Encoding Machine is a real-time asynchronous mecha-
nism for encoding amplitude information into a time sequence. We
investigate the operating characteristics of a machine consisting of
a feedback loop containing an adder, a linear filter and a Schmitt
trigger. We show how to recover the amplitude information of a
bandlimited signal from the time sequence loss-free.

1. INTRODUCTION

A fundamental question arising in information processing is how
to represent a signal as a discrete sequence. The classical sam-
pling theorem ([6], [10]) calls for representing a bandlimited sig-
nal based on its samples taken at or above the Nyquist rate.
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Fig. 1. Time Encoding and Decoding.

A time encoding of a bandlimited functionx(t), t ∈ R, is a
representation ofx(t) as a sequence of strictly increasing times
(tk), k ∈ Z (see Figure 1). Equivalently, the output of the en-
coder is a digital signalz(t) that switches between two values±b
at timestk, k ∈ Z. Time encoding is an alternative to classical
sampling and applications abound. In the field of neuroscience the
representation of sensory information as a sequence of action po-
tentials can be modeled as temporal encoding. The existence of
such a code was already postulated in [1]. Time encoding is also
of great interest for the design and implementation of future analog
to digital converters. Due to the ever decreasing size of integrated
circuits and the attendant low voltage, high precision quantizers
are more and more difficult to implement. These circuits provide
increasing timing resolution, however, that a temporal code can
take advantage of [9].

There are two natural requirements that a time encoding mech-
anism has to satisfy. The first is that the encoding should be im-
plemented as areal-time asynchronouscircuit. Secondly, the en-
coding mechanism should beinvertible, that is the amplitude in-
formation can be recovered from the time sequence with arbitrary
accuracy.

L.T. Tóth is currently on leave from Columbia University.

The encoding mechanism investigated in this paper satisfies
both of these conditions. We show that a Time Encoding Ma-
chine (TEM) consisting of a feedback loop that contains an adder,
a linear filter and a noninverting Schmitt trigger has the required
properties. We also show how to build a non-linear inverse Time
Decoding Machine (TDM) (see Figure 1) that perfectly recovers
the amplitude information from the time sequence.

2. TIME ENCODING

The TEM investigated in this paper is depicted in Figure 2. The
filter is assumed here to be an integrator. Clearly the amplitude
information at the input of the TEM is represented as a time se-
quence at its output.
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Fig. 2. An Example of a Time Encoding Machine

The basic principle of operation of the Time Encoding Ma-
chine is very simple. The bounded input signalx(t), |x(t)| ≤ c <
b, is biased by a constant amount+(−)b before being applied to
the integrator. This bias guarantees that the integrator’s outputy(t)
is a positive (negative) increasing (decreasing) function of time. In
steady state, there are two possible operating modes. In the first
mode, the output of the TEM is in statez(t) = −b and the in-
put to the Schmitt trigger grows from−δ to δ. When the output
of the integrator reaches the maximum valueδ, a transition of the
outputz(t) from−b to +b is triggered and the feedback becomes
negative. In the second mode of operation, the TEM is in state
z(t) = b and the integrator output steadily decreases fromδ to
−δ. When the maximum negative value−δ is reachedz(t) will
reverse to−b. Thus, while the transition times of the outputz(t)
are non-uniformly spaced, the amplitude of the output signal re-
mains constant. Therefore, a transition of the output from−b to b
or vice-versa takes place every time the integrator output reaches
the triggering markδ or −δ (called quanta). The time when this
quanta is achieved depends on the signal as well as on the design
parametersκ, δ andb. Hence, the Time Encoding Machine is map-
ping amplitude information into timing information. It achieves
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this by a signal-dependent sampling mechanism.

2.1. Stability and the Compensation Principle

In Figure 2,κ, δ, b are strictly positive real numbers andx = x(t)
is a Lebesgues measurable function that models the input signal to
the TEM for allt, t ∈ R. The output of the integrator is given by:

y(t) = y(t0) +
1

κ

Z t

t0

[x(u)− z(u)]du, (1)

for all t, t ≥ t0. Note thaty = y(t) is a continous increasing (de-
creasing) function whenever the value of the feedback is positive
(negative). Here,z : R→ {−b, b} for all t, t ∈ R, is the function
corresponding to the output of the TEM in Figure 2.z switches
between two values+b and−b at a set of trigger times(tk), for
all k, k ∈ Z, whereZ denotes the set of integers andz(t0) = −b
by convention.

Remark 1 Informally, the information of the inputx(t) is car-
ried by the signal amplitude whereas the information of the output
signalz(t) is carried by the trigger times. A fundamental ques-
tion, therefore, is whether the Time Encoding Machine encodes
information loss-free. Loss-free encoding means thatx(t) can be
perfectly recovered fromz(t).

Lemma 1 (Stability) For all input signalsx = x(t), t ∈ R, with
|x(t)| ≤ c < b the TEM is stable,i.e., |y(t)| ≤ δ , for all t, t ∈ R.
The outputz is given byz(t) = b (−1)k+1 for all tk ≤ t < tk+1,
t ∈ R, where the set of trigger times(tk), k ∈ Z, is obtained from
the recursive equation

Z tk+1

tk

x(u)du = (−1)k[−b(tk+1 − tk) + 2κδ], (2)

for all k, k ∈ Z.

Proof: Due to the operating characteristic of the Schmitt trigger,y
reaches the valueδ if the feedback isb or the value−δ if the feed-
back is−b for any arbitrary initial value of the integrator. There-
fore, without loss of generality we can assume that for some initial
conditiont = t0 we have(y, z) = (−δ,−b) and the Time Encod-
ing Machine is described in a small neighborhood oft0, t > t0,
by:

−δ +
1

κ

Z t

t0

[x(u) + b]du = δ. (3)

Since the left hand side is a continuously increasig function, there
exists a timet = t1, t0 < t1, such that the equation above holds.
Similarly starting with(y, z) = (δ, b) at timet1 the equation:

δ +
1

κ

Z t

t1

[x(u)− b]du = −δ. (4)

is satisfied for somet = t2, t1 < t2. Thus, the sequence(tk),
k ∈ Z, defined by the equations (2) uniquely describe the (output)
functionz = z(t), for all t, t ∈ R, and|y| ≤ δ by construction.

Corollary 1 (Upper and Lower Bounds for Trigger Times) For
all input signalsx = x(t), t ∈ R, with |x(t)| ≤ c < b, the dis-
tance between the consecutive trigger timestk and tk+1 is given
by:

2κδ

b + c
≤ tk+1 − tk ≤ 2κδ

b− c
, (5)

for all k, k ∈ Z.

Proof: By applying the mean value theorem to the term on the left
hand side of equation (2) we have

(−1)kx(ξk)(tk+1 − tk) = −b(tk+1 − tk) + 2κδ, (6)

whereξk ∈ [tk, tk+1]. Solving for tk+1 − tk and noting that
|x(t)| ≤ c we obtain the desired result. The bound is achieved for
a constant inputx(t) = c.

Lemma 2 (The Compensation Principle)
Z tl+2

tl

x(u)du =

Z tl+2

tl

z(u)du, (7)

for all l ∈ Z.

Proof: The desired result is obtained by adding equations (2) for
k = l andk = l + 1 .

Remark 2 If x(t) is a continuous function, there exists aξk ∈
[tk, tk+2], k ∈ Z, such that:

x(ξk)(tk+2−tk) = (−1)k[−b(tk+1−tk)+b(tk+2−tk+1)], (8)

i.e., the samplex(ξk) can be explicitly recovered from informa-
tion contained in the processz(t), tk ≤ t ≤ tk+2, k ∈ Z. Intu-
itively, therefore, any class of input signals that can be recovered
from its samples can also be recovered fromz(t). Note also that
the Compensation Principle provides for an estimate of the ampli-
tude of the input signalx(t) on a very small time scale that does
not explicitly depend onκδ.

Remark 3 The Compensation Principle can be easily extended to
subsets of or to the entire real line. Thus the DC component of the
input can be recovered fromz(t) even for non-bandlimited input
signalsx(t), t ∈ R.

3. PERFECT RECOVERY

A Time Decoding Machine has the task of recovering the signal
x = x(t), t ∈ R, from z = z(t), t ∈ R, or a noisy version of the
same. Here we will focus on the recovery of the original signalx
based onz only. We shall show that a perfect recovery is possible,
that is, the input signalx can be recovered fromz without any loss
of information.

Informally, the length of the interval between two consecutive
trigger times ofz(t) provides an estimate of the integral ofx(t) on
the same interval. This estimate can be used in conjunction with
the bandlimited assumption onx to obtain a perfect reconstruction
of the signal even though the trigger times are irregular. As ex-
pected, the interval between two consecutive trigger times has to
be smaller then the distance between the uniformly spaced samples
in the classical sampling theorem [6], [10].

The mathematical methodology used here is based on the the-
ory of frames [3]. We shall construct a linear operator onL2, the
space of square integrable functions defined onR, and by start-
ing from a good initial guess followed by successive interations,
obtain sucessive approximations that converge in the appropriate
norm to the original signalx.

Let us assume thatx = x(t), t ∈ R, is a signal bandlimited to
[−Ω, Ω] and let the operatorA be given by:

Ax =
X

k∈Z

Z tk+1

tk

x(u)du g(t− sk), (9)
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whereg(t) = sin(Ωt)/πt andsk = (tk+1 + tk)/2.
The realization of the operatorA above is highly intuitive.

Dirac-delta pulses are generated at times(tk+1+tk)/2 with weightR tk+1
tk

x(u)du and then passed through an ideal low pass filter with
unity gain forω ∈ [−Ω, Ω] and zero otherwise. The values ofR tk+1

tk
x(u)du are available at the TDM through equation (2).

Let xl = xl(t), t ∈ R, be a sequence of bandlimited functions
defined by the recursion:

xl+1 = xl +A(x− xl), (10)

for all l, l ∈ Z, with the initial conditionx0 = Ax.
Note that since the distance between two consecutive trigger

times is bounded by2κδ/(b− c) (see equation (5)),

‖ I −A ‖≤ r, (11)

wherer = 2κδ
b−c

Ω
π

[4].

Theorem 1 (Operator Formulation) Let x = x(t), t ∈ R, be
a bounded signal|x(t)| ≤ c < b bandlimited to[−Ω, Ω]. Let
z = z(t), t ∈ R, be the ouput of a Time Encoding Machine
with integrator constantκ and Schmitt trigger parameters(δ, b).
If κδ ≤ b−c

2
π
Ω

, the signalx can be perfectly recovered fromz as

x(t) = lim
l→∞

xl(t), (12)

and
‖ x− xl ‖≤ rl+1 ‖ x ‖ . (13)

Proof: By induction we can show that

xl =

lX

k=0

(I −A)kAx. (14)

Since‖ I −A ‖≤ r < 1,

lim
l→∞

xl =
X

k∈N
(I −A)kAx = A−1Ax = x. (15)

Also,

x− xl =
X

k≥l+1

(I −A)kAx = (I −A)l+1
X

k∈N
(I −A)kAx

= (I −A)l+1A−1Ax = (I −A)l+1x,

(16)

and, therefore,‖ x− xl ‖≤ rl+1 ‖ x ‖.
Let us defineg = [g(t − sk)]T , q = [

R tk+1
tk

x(u) du] and

G = [
R tl+1

tl
g(u− sk) du]. We have the following

Theorem 2 (Matrix Formulation) Under the assumptions of The-
orem 1 the bandlimited signalx can be perfectly recovered fromz
as

x(t) = lim
l→∞

xl(t) = gG+q. (17)

whereG+ denotes the pseudo-inverse ofG. Furthermore,

xl(t) = gPlq, (18)

wherePl is given by

Pl =

lX

k=0

(I−G)k. (19)

Proof: By induction. Sincex0(t) = gq with P0 = I, we assume
thatxl(t) = gPlq with Pl =

Pl
k=0(I−G)k. We have

xl+1(t) = g(Pl + I−GPl)q = gPl+1q. (20)

The convergence of the sum forPl and the existence of the
pseudo-inverseG+ is guaranteed by Theorem 1.

Let h(t) = sin(Ωt)/Ωt, t ∈ R, andH = [
R tl+1

tl
h(t − kT )]

with T = π/Ω.

Corollary 2 (Change of Frame) Under the assumptions of The-
orem 1, iftl < kT < tl+1 for all k ∈ Z and somel ∈ Z

p = H−1q, (21)

wherep = [x(kT )], k ∈ Z, andH−1 is the inverse ofH.

Proof: Integrating both sides of the classical sampling representa-
tion of bandlimited signals

x(t) =
X

k∈Z
x(kT ) h(t− kT ), (22)

we obtain the desired result fromZ tl+1

tl

x(t) dt =
X

k∈Z
x(kT )

Z tl+1

tl

h(t− kT ) dt. (23)

4. EXAMPLE

The mathematical formulation of the previous section assumes that
the dimensionality of the matrices and vectors used is infinite. In
simulations, however, only a finite time window can be used. We
briefly investigate three different implementations of the TDM in
the finite dimensional case that are, respectively, based on the (i)
recursive equation (18), (ii) closed form formula (17), and (iii)
change of frame formula (21).

In all our simulations, the input signal is given by (22) where
the samplesx(T ) throughx(12T ), respectively, are given by -
0.394103, 0.375745, 0.416555, 0.198506, -0.55382, 0.0405288,
0.583311, 0.278091, -0.135832, -0.292735, -0.223741, -0.585826,
x(kT ) = 0, for k ≤ 0 andk > 12 andT = π/Ω = 1.25 ms.
Fig. 3(a) showsx(t) together with the time window used for sim-
ulations. Fig. 3(b) shows the simulation results fory(t) andz(t)
with δ = 0.55, b = 1, andκ = 318.31 µs. The 40 trigger times
of z(t) shown were determined with high accuracy using (2).

(i) The error signals shown by Fig. 4(a) are defined asel =
el(t) = xl(t) − x(t), wherexl(t) was calculated based on (18).
Instead of applying (19) directly we used the recursionPl+1 =
I + Pl(I −G) and calculatedxl(t) iteratively. As shown,el(t)
decreases in agreement with Theorem 1, since with the parameters
introducedr = 0.7115 < 1. We note (not shown in the figure)
thatmaxt(e200) = 1.52× 10−4.

(ii) Although the matrixG in (17) is singular, perfect recov-
ery can be achieved usingG+, the pseudo-inverse ofG (if G is
non-singular thenG+ = G−1). The corresponding error signal
defined asgG+q − x(t) is shown by the solid line of Fig. 4(b).
The small error is due to the finite precision used.

(iii) The dashed line of Fig.4(b) shows the error when the ban-
dlimited signalx(t) is recovered using the sampling representa-
tion (22) and the samplesx(kT ) are obtained from (21). Thetl’s
selected represent the set of closest pair of trigger times around
kT − T/2, k ∈ Z. All other trigger times are dropped. Again, the
small error is due to numerical inaccuracies. We note that matrix
H turned out to be not only invertible but well-conditioned as well.
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Fig. 3. Overall bandlimited input signalx(t) (a), integrator output
signaly(t) and the TEM output signalz(t) (b).
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Fig. 4. Approximating signals using iteration (a), overall error
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5. RELATIONSHIP TO OTHER MODULATION
SCHEMES

The Time Decoding Machine and the demodulator for Frequency
Modulation (FM) [2] operate on a signal that has the same in-
formation structure. Recall that FM demodulation is achieved by
finding the timest such that:

sin(ωt + η

Z t

t0

x(u)du + φ) = 0, (24)

whereω is the modulation frequency andη is the modulation in-
dex. Therefore,

Z tk+1

tk

x(u)du = −ω

η
(tk+1 − tk) +

π

η
. (25)

We call the mapping of amplitude information into timing infor-
mation as exemplified by the equations (2) and (24) theTransylva-
nia transformor t-transformfor short. Note that the equations (2)
and (25) have the same basic structure. Hence an FM modulated
signal x can be perfectly recovered from the sequence of times
(tk), k ∈ Z using the TDM. These observations establish a bridge
to non-uniform sampling methods previously applied to improve
the performance of FM and other non-linear modulators [8].

The Time Encoding Machine also models an Asynchronous
Sigma-Delta modulator [5] and, therefore, the latter is invertible.
Past attempts at building Sigma-Delta demodulators have led to

low accuracy in signal recovery [9]. This is because of the linear
structure of these demodulators.

6. CONCLUSIONS

We showed that a simple Time Encoding Machine can be used
for generating time codes for arbitrary bandlimited signals. The
TEM consists of a feedback loop that contains an adder, a filter
and a noninverting Schmitt trigger. We derived a simple condition
that guarantees that the amplitude of the bandlimited signal can
be recovered from the time sequence loss-free. We also presented
algorithms for perfect recovery and briefly investigated their per-
formance.

TEMs can easily be incorporated into current digital systems
by measuring the trigger-times(tk), k ∈ Z. The analysis of such
a system will be presented elsewhere [7].

Finally, it has not escaped the authors that the Time Encoding
Machine can be used as a neuro-modulator with perfect informa-
tion recovery. Therefore, such a modulator can be applied to image
and auditory neural coding.
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