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ABSTRACT The encoding mechanism investigated in this paper satisfies
A Time Encoding Machine is a real-time asynchronous mecha- both of these conditions. We show that a Time Encoding Ma-
nism for encoding amplitude information into a time sequence. We chine (TEM) consisting of a feedback loop that contains an adder,
investigate the operating characteristics of a machine consisting of2 linear filter and a noninverting Schmitt trigger has the required
a feedback loop containing an adder, a linear filter and a Schmitt Properties. We also show how to build a non-linear inverse Time
trigger. We show how to recover the amplitude information of a Decoding Machine (TDM) (see Figure 1) that perfectly recovers
bandlimited signal from the time sequence loss-free. the amplitude information from the time sequence.

1. INTRODUCTION 2. TIME ENCODING

A fundamental question arising in information processing is how The TEM investigated in this paper is depicted in Figure 2. The
to represent a signal as a discrete sequence. The classical saniiter is assumed here to be an integrator. Clearly the amplitude
pling theorem ([6], [10]) calls for representing a bandlimited sig- information at the input of the TEM is represented as a time se-

nal based on its samples taken at or above the Nyquist rate. quence at its output.
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Fig. 1. Time Encoding and Decoding.
. . . . . Fig. 2. An Example of a Time Encoding Machine
A time encoding of a bandlimited function(t),t € R, is a g P g
representation of(¢) as a sequence of strictly increasing times
(tx),k € Z (see Figure 1). Equivalently, the output of the en-

coder is a digital signad(¢) that switches between two valug$ b is biased b nstant am b before bein lied t
at timesty, k € Z. Time encoding is an alternative to classical S biased by a constant a ouR(—)b be ore being a’pp edto
the integrator. This bias guarantees that the integrator’s oy{put

sampling and applications abound. In the field of neuroscience the.

representation of sensory information as a sequence of action po-IS a positive (negative) increasing (decreasing) function of time. In

tentials can be modeled as temporal encoding. The existence Oisteady state, there are wo po_ssi_ble operating modes. In _the first
such a code was already postulated in [1]. Time encoding is alsomOde‘ Lhe OuhtpL.‘t Of. the TEM 'Sfm staigt) :W;nb an: the in-
of great interest for the design and implementation of future analog put to t e Schmitt trigger grows romd t0 0. en .t. e output
to digital converters. Due to the ever decreasing size of integratedOf the integrator reaches the maximum va@ transition of the

circuits and the attendant low voltage, high precision quantizers ﬁUtpl:it\f (t) Iftf‘otr;]] —bto :3 |rsntr(|jgge;ed ar:dtithﬁ ftehedt%aécl\lz ti)e?rc])mtest
are more and more difficult to implement. These circuits provide egative. € seco ode of operation, the S In state

increasing timing resolution, however, that a temporal code can z(t) = b and the |n_tegrator out_put steadl!y decreases frio_tn
take advantage of [9]. —4. When the maximum negative value is reached:(t) will

There are two natural requirements that a time encoding mech-€verse to—_b. Thus, while the transn!on times of the OUtpr(t)
anism has to satisfy. The first is that the encoding should be im- are non-uniformly spaced, the amplitude of the output signal re-
plemented as eeal-time asynchronousircuit. Secondly, the en- ~ M&NS constant. Therefore, a transition of the output frefrto b
coding mechanism should levertible, that is the amplitude in- or vice-versa takes place every time the integrator output reaches

formation can be recovered from the time sequence with arbitrary the trlggenng_marlé or -4 (called qua_mta). The time when this .
accuracy. quanta is achieved depends on the signal as well as on the design

parameters, § andb. Hence, the Time Encoding Machine is map-
L.T. Toth is currently on leave from Columbia University. ping amplitude information into timing information. It achieves

The basic principle of operation of the Time Encoding Ma-
chine is very simple. The bounded input signét), |z(t)| < ¢ <

0-7803-7663-3/03/$17.00 ©2003 IEEE VI -709 ICASSP 2003



this by a signal-dependent sampling mechanism. Proof: By applying the mean value theorem to the term on the left
hand side of equation (2) we have

2.1. Stability and the Compensation Principle (—1)kx(£k)(tk+1 — 1) = —b(trsr — ) + 286 ©6)
where&, € [tk,tr+1]. Solving fortx+1 — ¢ and noting that

c11:(7f)| < ¢ we obtain the desired result. The bound is achieved for
a constant input(t) = c.

In Figure 2,x, 4, b are strictly positive real numbers amd= x(t)
is a Lebesgues measurable function that models the input signal t
the TEM for all¢, ¢t € R. The output of the integrator is given by:

z t
y(t) = y(to) + ., [2(u) — z(u)]du, @) Lemma 2 (The Compensation Principle)
0 Z Z
forall ¢, t > to. Note thaty = y(t) is a continous increasing (de- e w(u)du = e 2(u)du, (7)
creasing) function whenever the value of the feedback is positive # t

(negative). Herez : R — {—b, b} forall ¢, ¢t € R, is the function
corresponding to the output of the TEM in Figure 2 switches
between two values-b and —b at a set of trigger timegty), for Proof: The desired result is obtained by adding equations (2) for
all k, k € Z, whereZ denotes the set of integers ando) = —b k=landk=1+1.

by convention.

foralll € Z.

_ _ _ _ Remark 2 If z(t) is a continuous function, there exists£a €
Remark 1 Informally, the information of the inpuk(¢) is car- [tk, tki2], k € Z, such that:

ried by the signal amplitude whereas the information of the output .
signal z(t) is carried by the trigger times. A fundamental ques-  =(&x)(tkr2—tk) = (=1)°[=b(try1—tr) +b(trr2—try1)], (8)
tion, therefore, is whether the Time Encoding Machine encodes .

information loss-free. Loss-free encoding means #t{a} can be ;i'gh’ (t:rgit:\?nrzzl%('fﬁg C?&g;‘i;{p}!'cﬂy trezog’eredkfrgg'”lfﬁtru”_‘a'
perfectly recovered from(t). p vt St Sty :

itively, therefore, any class of input signals that can be recovered
from its samples can also be recovered freft). Note also that
the Compensation Principle provides for an estimate of the ampli-
tude of the input signat(¢) on a very small time scale that does
not explicitly depend om4.

Lemma 1 (Stability) For all input signalsz = z(¢), t € R, with
|z(t)| < ¢ < bthe TEMis stablej.e., |y(t)| < ¢ ,forall¢, t € R.
The outputz is given byz(t) = b (—=1)* ! forall ty, <t < tgi1,
t € R, where the set of trigger timés;,), k € Z, is obtained from

the recursive equation . . .
q Remark 3 The Compensation Principle can be easily extended to

Frta du — (—1)*—b(t ' 915 2 subsets of or to the entire real line. Thus the DC component of the
(u)du = (=1)7[=b(th+1 — tx) + 260, (2) input can be recovered from(t) even for non-bandlimited input

" signalsz(t),t € R.
forall k, k € Z.
Proof: Due to the operating characteristic of the Schmitt trigger, 3. PERFECT RECOVERY

reaches the valugif the feedback i$ or the value— if the feed-

back is—b for any arbitrary initial value of the integrator. There- A Time Decoding Machine has the task of recovering the signal
fore, without loss of generality we can assume that for some initial © = =(t), t € R, from z = 2(¢), ¢t € R, or a noisy version of the
conditiont = t, we have(y, z) = (-, —b) and the Time Encod- ~ same. Here we will focus on the recovery of the original signal

ing Machine is described in a small neighborhood@ft > to, based orx only. We shall show that a perfect recovery is possible,
by: 7 that is, the input signat can be recovered fromwithout any loss
t of information.
=0+~ [z(uw) +bldu=0. 3) Informally, the length of the interval between two consecutive

to
Since the left hand side is a continuously increasig function, there
exists a time = t1, to < t1, such that the equation above holds.
Similarly starting with(y, z) = (4, b) at timet, the equation:

trigger times ofz(¢) provides an estimate of the integralx(ft) on

the same interval. This estimate can be used in conjunction with
the bandlimited assumption arto obtain a perfect reconstruction

of the signal even though the trigger times are irregular. As ex-

17t pected, the interval between two consecutive trigger times has to
o+ " [z(u) — bldu = —4. (4) be smaller then the distance between the uniformly spaced samples
“ in the classical sampling theorem [6], [10].
is satisfied for someé = 2, t1 < t2. Thus, the sequendgx), The mathematical methodology used here is based on the the-
k € Z, defined by the equations (2) uniquely describe the (output) ory of frames [3]. We shall construct a linear operatorldn the
functionz = z(t), forall ¢, ¢t € R, and|y| < ¢ by construction. space of square integrable functions definedRprand by start-

_ _ ing from a good initial guess followed by successive interations,
Corollary 1 (Upper and Lower Bounds for Trigger Times) For obtain sucessive approximations that converge in the appropriate

all input signalsz = z(t), t € R, with |z(¢)| < ¢ < b, the dis- norm to the original signat.
tance between the consecutive trigger timesndt,41 is given Let us assume that = z(t),t € R, is a signal bandlimited to
by: [, Q] and let the operatad be given by:
2Kk0 2Kk0 7
b Stppr —te < P (5) XT e
+c —c Ax = z(u)du g(t — sk), 9)
forall k, k € Z. kez tk
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whereg(t) = sin(Qt)/mt andsy = (tet1 + tk)/2.
The realization of the operatod above is highly intuitive.
irac-delta pulses are generated at tirftgs.1 +t ) /2 with weight
t
rTity gain forw € [—Q, Q] and zero otherwise. The values of
f:“ z(u)du are available at the TDM through equation (2).
Letz; = x;(t), t € R, be a sequence of bandlimited functions

defined by the recursion:
Ti41 = X + .A(l' — a:l), (10)

foralll, [ € Z, with the initial conditionzy = Ax.

Note that since the distance between two consecutive trigger

times is bounded bgxd/(b — ¢) (see equation (5)),

[ 1—Al<m, 11

[
wherer = 252 2 [4],

Theorem 1 (Operator Formulation) Letz = z(t), t € R, be
a bounded signajz(t)| < ¢ < b bandlimited to[—£2,Q]. Let
z = z(t), t € R, be the ouput of a Time Encoding Machine
with integrator constant and Schmitt trigger parameters, b).

If ko < 2 5 & the signalr can be perfectly recovered fromas
z(t) = llim z1(t), (12)
and
le—a [|<r'* 2]l (13)
Proof: By induction we can show that
X k
= ([I-A"Ax. (14)
k=0
Since| I - A||<r <1,
X
limz = (I—-A)*Az=A"Az =z. (15)
fee keN
Also,
k ! 208 k
T—x = (I-A)f Az =1 -A"" (T-AfAx
k>14+1 keN
=(I-AT A Az = (I - A e,
(16)

and, therefore)) = — z; || <7t || 2 |.

Let us defineg = [g(t — s1)]", a = [ [**" @(u) du] and
G=] tt’l“ g(u — sz) du]. We have the following
Theorem 2 (Matrix Formulation) Under the assumptions of The-

orem 1 the bandlimited signal can be perfectly recovered from
as

z(t) = llim z1(t) = gGtq. a7
whereG™ denotes the pseudo-inverse®f Furthermore,
z1(t) = gPuq, (18)
whereP, is given by
X k
P, = I-aG)~. (19)
k=0

‘41 2(u)du and then passed through an ideal low pass filter with

Proof: By induction. Sincez:o@ = gq with Py = I, we assume
thatz(t) = gPiqwith P, = | _ (I - G)*. We have
z141(t) = g(Pi + I - GPi)q = gP11q. (20)
The convergence of the sum f&; and the existence of the
pseudo-invers&™ is guaranteed by Theorer 1.
Leth(t) = sin(Qt)/Qt, ¢ € R, andH = [ "' h(t — kT)]
with T = 7 /€.
Corollary 2 (Change of Frame) Under the assumptions of The-
orem 1, ift; < kT < t;4, forall k € Z and somé € Z
p=Hq, (21)
wherep = [z(kT)], k € Z, andH ! is the inverse oH.

Proof: Integrating both sides of the classical sampling representa-
tion of bandlimited signals
>

z(t) = z(kT) h(t — kT), (22)
kez
we obtain the desired result from
tig1 < tiy
z(t) dt = x(kT) h(t — kT) dt. (23)
t kez t
4, EXAMPLE

The mathematical formulation of the previous section assumes that
the dimensionality of the matrices and vectors used is infinite. In
simulations, however, only a finite time window can be used. We
briefly investigate three different implementations of the TDM in
the finite dimensional case that are, respectively, based on the (i)
recursive equation (18), (ii) closed form formula (17), and (iii)
change of frame formula (21).

In all our simulations, the input signal is given by (22) where
the samples:(T") throughz(127'), respectively, are given by -
0.394103, 0.375745, 0.416555, 0.198506, -0.55382, 0.0405288,
0.583311, 0.278091, -0.135832, -0.292735, -0.223741, -0.585826,
z(kT) = 0, fork < 0andk > 12 andT = n/Q = 1.25 ms.

Fig. 3(a) shows:(t) together with the time window used for sim-
ulations. Fig. 3(b) shows the simulation results §¢t) and z(t)
with § = 0.55, b = 1, andx = 318.31 us. The 40 trigger times
of z(t) shown were determined with high accuracy using (2).

(i) The error signals shown by Fig. 4(a) are definectas=
el(t) = zi(t) — z(t), wherex;(t) was calculated based on (18).
Instead of applying (19) directly we used the recursidn, =
I+ P;(I — G) and calculated:;(¢) iteratively. As showng;(t)
decreases in agreement with Theorem 1, since with the parameters
introducedr = 0.7115 < 1. We note (not shown in the figure)
thatmax; (ea00) = 1.52 x 1074,

(i) Although the matrixG in (17) is singular, perfect recov-
ery can be achieved usi@ ™, the pseudo-inverse @ (if G is
non-singular therG™ = G™1). The corresponding error signal
defined agG ™ q — z(t) is shown by the solid line of Fig. 4(b).
The small error is due to the finite precision used.

(iii) The dashed line of Fig.4(b) shows the error when the ban-
dlimited signalz(¢) is recovered using the sampling representa-
tion (22) and the sampleskT") are obtained from (21). The's
selected represent the set of closest pair of trigger times around
kT —T/2, k € Z. All other trigger times are dropped. Again, the
small error is due to numerical inaccuracies. We note that matrix
H turned out to be not only invertible but well-conditioned as well.
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] low accuracy in signal recovery [9]. This is because of the linear
] structure of these demodulators.

6. CONCLUSIONS

We showed that a simple Time Encoding Machine can be used
for generating time codes for arbitrary bandlimited signals. The
TEM consists of a feedback loop that contains an adder, a filter
° i and a noninverting Schmitt trigger. We derived a simple condition

I that guarantees that the amplitude of the bandlimited signal can
be recovered from the time sequence loss-free. We also presented
algorithms for perfect recovery and briefly investigated their per-

formance.

Fig. 3. Overall bandlimited input signal(¢) (a), integrator output
signaly(t) and the TEM output signal(t) (b).
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Fig. 4. Approximating signals using iteration (a), overall error
signals using closed formulas (b).

(4]

5. RELATIONSHIP TO OTHER MODULATION
SCHEMES
The Time Decoding Machine and the demodulator for Frequency (5]
Modulation (FM) [2] operate on a signhal that has the same in-
formation structure. Recall that FM demodulation is achieved by
finding the timeg such that:
Z t
sinfwt+1n  z(u)du+ ¢) =0,

to

(6]
(24)

wherew is the modulation frequency angis the modulation in-
dex. Therefore,
z

tet1
z(u)du = —

7
2 (thgr — te) + % (25) )

b [8]

We call the mapping of amplitude information into timing infor-
mation as exemplified by the equations (2) and (24)Tiamsylva-
nia transformor t-transformfor short. Note that the equations (2)
and (25) have the same basic structure. Hence an FM modulated
signalz can be perfectly recovered from the sequence of times 9]
(tx), k € Z using the TDM. These observations establish a bridge
to non-uniform sampling methods previously applied to improve
the performance of FM and other non-linear modulators [8].

The Time Encoding Machine also models an Asynchronous
Sigma-Delta modulator [5] and, therefore, the latter is invertible.
Past attempts at building Sigma-Delta demodulators have led to

(10]
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TEMSs can easily be incorporated into current digital systems
by measuring the trigger-timés;), k € Z. The analysis of such
a system will be presented elsewhere [7].

Finally, it has not escaped the authors that the Time Encoding
Machine can be used as a neuro-modulator with perfect informa-
tion recovery. Therefore, such a modulator can be applied to image
and auditory neural coding.
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