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ABSTRACT

For sequential probabilistic inference in nonlinear non-Gaussian
systems approximate solutions must be used. We present a novel
recursive Bayesian estimation algorithm that combines an impor-
tance sampling based measurement update step with a bank of
Sigma-Point Kalman Filters for the time-update and proposal dis-
tribution generation. The posterior state density isrepresented by a
Gaussian mixture model that is recovered from the weighted parti-
cle set of the measurement update step by means of aweighted EM
agorithm. This step replaces the resampling stage needed by most
particle filters and mitigates the “sample depletion” problem. We
show that this new approach has an improved estimation perfor-
mance and reduced computational complexity compared to other
related algorithms.

1. INTRODUCTION

Sequential probabilistic inference (SPI) is the problem of estimat-
ing the hidden states of a system in an optimal and consistent fash-
ion as set of noisy or incomplete observations becomes available
online. Examples of this include vehicle navigation and tracking,
financial time-series prediction, and speech enhancement, to name
but a few. This paper focuses specifically on discrete-time non-
linear dynamic systems that can be described by a dynamic state-
space model (DSSM) as depicted in Figure 1. The hidden system
state x;, with initial distribution p(xo), evolves over time* as an
unobserved first order Markov process according to the conditional
probability density p(xx|xx—1). The observations y; are condi-
tionally independent given the state and are generated according to
the probability density p(yx|xx). The DSSM can aso be written
as a set of system equations

(process equation) Q)
(observation equation) 2

f(xp—1,Ve-1)
h(x, ng)

Xk =
Ye =

where v, is the process noise that drives the dynamic system
through the nonlinear state transition function f, and ny, isthe ob-
servation or measurement noise corrupting the observation of the
state through the nonlinear observation function h. The state tran-
sition density p(xx|xr—1) is fully specified by f and the process
noise distribution p(vy, ), whereas h and the observation noise dis-
tribution p(ny, ) fully specify the observation likelihood p(yx|xx).

In a Bayesian framework, the posterior filtering density
p(xk|Yy) of the state given al the observations Y, =
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Fig. 1. Dynamic state space model.

{y1,¥2,-..,¥r} constitutes the complete solution to the sequen-
tial probabilistic inference problem, and allows us to calculate
any "optimal" estimate of the state, such as the conditional mean
)A(k = E[Xk|Yk] = kap(xk|Yk)ka. The optimal method to
recursively update the posterior density as new observations arrive
is given by the recursive Bayesian estimation algorithm

P(xk|Yr) = Cp(yr|xe)p(xk| Yi-1) ©)]

where p(xx|Yi-1) = [ p(xx|xk—1)p(xp—1|Yr—1)dxr—1 and
C = ([ plyn|xe)p(xk|Yro1)dxi) . Although thisis the op-
timal recursive solution, it is usualy only tractable for linear,
Gaussian systems’, whereas for most general real-world (nonlin-
ear, non-Gaussian) systems the multi-dimensional integralsarein-
tractable and approximate solutions must be used. These include
the well-known Extended Kalman Filters (EKF) [1], Gaussian
Sum Filters [2], Sigma-Point Kalman Filters® [3, 4, 6, 5] and Se-
quential Monte-Carlo Methods (Particle Filters) [7].

Flawsin the EKF (inaccuracy, difficulty of implementation and
tuning, divergence, etc.) led to the development of improved Gaus-
sian approximate derivative-free Kalman filters called S gma-Point
Kalman Filters (SPKF). These filters have the same computational
cost of the EKF, but do not need explicit calculation of system
derivatives and consistently outperform the EKF in terms of es-
timation error, consistency and efficiency. See [5, 8] for a thor-
ough exposition of SPKFs. The SPKF, like the EKF, still as-
sumes a Gaussian posterior which can fail in certain nonlinear
non-Gaussian problems with multi-modal and/or heavy tailed pos-
terior distributions. The Gaussian sum filter (GSF) addresses this
issue by approximating the posterior density with afinite Gaussian

2Inthe linear Gaussian case the recursive Bayesian solution is given by
the well known Kalman filter[ 1].

39gma-point Kalman filters is a generalization of the family of Gaus-
sian approximate nonlinear Kalman filters which include the Unscented
Kalman Filter (UKF)[3], the Central Difference Kaman Filter (CDKF) [4]
and other related algorithms [5, 6].
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mixture and can be interpreted as a parallel bank of EKFs. Unfor-
tunately, due to the use of the EKF as a subcomponent, it also
suffers from similar shortcomings as the EKF. Recently, particle
based sampling filters have been proposed and used successfully
to recursively update the posterior distribution using sequential
importance sampling and resampling [7]. These methods (collec-
tively called particle filters) approximate the posterior by a set of
weighted samples without making any explicit assumption about
its form and can thus be used in general nonlinear, non-Gaussian
systems. They do, however, need to use a large number of parti-
clesfor accurate and robust operation, which often make their use
computationally expensive. Furthermore, they suffer from an ail-
ment called “sample depletion” that can cause the sample based
posterior approximation to collapse over time to afew samples. It
was shown in [9] that by moving the particlesto areas of high like-
lihood during the measurement update, the sample depl etion prob-
lem can be mitigated leading to a significant increase in perfor-
mance. Thisis accomplished by using a SPKF for the generation
of the proposal distribution in the importance sampling measure-
ment update step (See section 1.2 for a definition of the proposal
distribution). The resulting filter is called the Unscented Particle
Filter and has subsequently been generalized to a family of filters
called Sgma-Point Particle Filters (SPPF) [8]. Although the SPPF
has large estimation performance benefits over the standard PF, it
still incurs a heavy computational burden since it has to run an
O(m?2) SPKF for each particle in the posterior state distribution.

In this paper, we present a novel agorithm to recursively up-
date the posterior density called the Gaussian Mixture Sigma-
Point Particle Filter (GMSPPF). Thisfilter has equal or better es-
timation performance when compared to standard particle filters
and the SPPF, at a largely reduced computational cost. The GM-
SPPF combines an importance sampling (IS) based measurement
update step with a SPKF based Gaussian sum filter for the time-
update and proposal density generation. The GM SPPF uses afinite
Gaussian mixture model (GMM) representation of the posterior
filtering density, which is recovered from the weighted posterior
particle set of the IS based measurement update stage, by means
of a weighted Expectation-Maximization (WEM) algorithm. The
WEM stage also replaces the resampling step of the standard par-
ticlefilter and mitigatesthe “ sample depletion” problem. Thethree
main algorithmic components used in the GM SPPF are briefly dis-
cussed below to provide some background on their use. In Section
2 we show how these three components are combined to form the
GM SPPF algorithm.

1.1. SPKF based Gaussian mixture approximation

It can be shown [1] than any probability density p(x) can
be approximated as closely as desired by a Gaussian mixture
model (GMM) of the following form, p(x) ~ pg(x) =
Yol aN(x;u), P)), where G is the number of mixing
components, o) arethe mixing weights and \V'(x; u, P) isanor-
mal distribution with mean vector p and positive definite covari-
ance matrix P. Given Equations 1 and 2, and assuming that the
prior density p(xx—1|Yx—1) and system noise densities p(vy—1)
and p(ny;) are expressed by GMMs, the following densities can
aso be approximated by GMMs:. 1) the predictive prior density,

PO Y o )mpg (ki Yior) = Ly ol ON (g, PEY),
and 2) the updated posterior density, p(xx|Yr)~pg(xx|Yr) =
G a9 ON () PP, where ' = GI and G =

G'J = GIJ (G, | and J are the number of components in the

state, process noise, and observation noise GMMs respectively).
The predicted and updated Gaussian component means and co-
variances of pg(xx|Yr—1) and pg(xr|Y) are caculated using
the Kalman filter equations [1] (In the GM SPPF we use a bank of
SPKFs). The mixing weight update procedure are shown in Sec-
tion 2.1. It is clear that the number of mixing components in the
GMM representation grows from G to G’ in the predictive (time
update) step and from G’ to G” in the subsequent measurement
update step. Over time, thiswill lead to an exponential increasein
the total number of mixing components and must be addressed by
a mixing-component reduction scheme (See Section 1.3 for how
thisis achieved in the GM SPPF).

1.2. Importance sampling (IS) based measurement update

Importance sampling is a Monte-Carlo method that represents
a distribution p(x) by an empirical approximation based on a
set of weighted samples (particles), i.e. p(x) = p(x) =
S, wd(x — x V), where §(.) isthe Dirac delta function, and
the weighted sample set, {w®, ¥; 1 = 1... N} aredrawn from
some related, easy-to-sample-from proposal distribution 7(x).
Theweights are given by w(®) = Z{Vi if)((ljy)(/l;r)(;:((ljy)(l)) . Giventhis,
any estimate of the system such as £, [g(x)] = [ g(x)p(x)dx can
be approximated by E[g(x)] = 31, w®g(x®) [7]. Using the
first order Markov nature of our DSSM and the conditional inde-
pendence of the observations given the state, a recursive update
formula (implicitly a nonlinear measurement update) for the im-
portance weights can be derived [7]. Thisis given by

wl = wl plyelxe)p(xlxi-1)/m(xi) for xi = X1 (4)

In the GM SPPF we use the GMM approximate pg (x| YY) from
the bank of SPKFs (see Sec.1.1) as the proposal distribution
w(xk). In[9] we showed that sampling from such a proposa
(which incorporates the latest observation), moves particles to ar-
eas of high likelihood which in turn reduces the “sample deple-
tion” problem. Furthermore we use the predictive prior distribu-
tion pg (xx|Yr—1) (see Sec.1.1) as a smoothed (over prior distri-
bution of x_1) evaluation of the p(xx|x,—1) termin the weight
update equation. This is needed since the GMSPPF represents
the posterior (which becomes the prior at the next time step) by
a GMM, which effectively smoothes the posterior particle set by
a set of Gaussian kernels. The IS based measurement update step
presented here does not make any assumptions on the form of the
posterior density which makesit inherently more powerful for gen-
eral nonlinear, non-Gaussian systems, in comparison to the linear
Kalman update which isonly optimal in the linear Gaussian case.

1.3. Weighted EM for resampling and GMM recovery

The output of the 1S-based measurement update stage is a set of
N weighted particles, which in the standard particle filter is re-
sampled in order to discard particles with insignificant weights
and multiply particles with large weights. This step is needed
to keep the variance of the particle set from growing too rapidly
[7]. Unfortunately, resampling can also contribute to the “par-
ticle depletion” problem in cases where the measurement likeli-
hood is very peaked, causing the particle set to collapse to multi-
ple copies of the same particle [7]. Since the GM SPPF represents
the posterior by a GMM, we can replace the resampling stage by
aweighted Expectation-Maximization (EM) [10] step that directly
recovers a maximum-likelihood G-component GMM fit to the set
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of weighted samples. Thisimplicitly smoothes over the posterior
set of samples, avoiding the “particle depletion” problem, and at
the same time the number of mixing components in the posterior
isreduced to G, avoiding the exponential growth problem alluded
toin Section 1.1.

2. THE GMSPPF ALGORITHM

The full GMSPPF agorithm will now be presented based on the
component parts discussed above.

2.1. Timeupdate and proposal distribution generation

At time k-1, assume the posterior state density is approximated by
the G-component GMM

G
p6 (Xk-1|Yro1) = Za}f)lj\/’ (xk_l;u,(cgjl,P,(cgjl) ., (5
g=1

and the process and observation noise densities are approximated
by the following I and J component GMMSs respectively

1
S BN (vicimn2,Q2,) @

i=1

pg(Vi-1) =

J
pg(nk) SN (nk;un,(f), Ri“) @)

Jj=1

Following the GSF approach of [2], but replacing the EKF with
a SPKF, the output of a bank of G’ = GIJ parallel SPKFs
are used to calculate GMM approximations of p(xy|Y,—1) and
p(xx|Y}) according to the pseudo-code given below. For clarity
of notation define ¢ = g + (¢ — 1)G and note that references
to g’ implies references to the respective g and i, since they are
uniquely mapped. Similarly define ¢’ = ¢’ + (j — 1)GI withthe
same implied unique index mapping. Now,

1 For j=1...J, st pj(ni) = N(nw;pl), RY)). For
1=1...1, Setﬁi(vk—l):N(Vk—liﬂx)k,l;Q](clzl) and for
g=1...G,Setﬁg(xk_1|Yk_1)=N(xk_1;;Lig_)l,P,(cg_)l).

2. For ¢g'=1...G' use the time update step of a
SPKF* (employing the system process equation
(1) and densities py(xk—1|Yr-1) and pi(vi—1)
from above) to caculate a Gaussian approximate
Por (Xk[Yio1)=N (x4; 1), P¥")) and update the mixing

weights, aig):ai@1 1(62_)1 (Zngl Zf=1 O‘;cg—)1 IE:z—)l)
@ For ¢" = 1...G", complete the measure-

ment update step of each SPKF (employing the
system observation equation (2), current observa
tion yx, and densities Py (xx|Yr—1) and p;(ny)
from above) to calculate a Gaussian approxi-
mate P (xx[Yi)=N(xs; ¢ ), PY ). Also
update the GMM mixing weights, afj’ ) =
oy S (G Ty i 9 8), where
SY) = pi(yk|xx) evaluated at x;, = @\ for the
current observation, yy..

4The SPKF algorithm pseudo-code will not be given here explicitly.
See [5, 6] for implementation details.

The predictive state density is now approximated by the GMM
GI
po(al Y1) =Y aff N (Xk;ﬁgf ), By )) ®)
g'=1

and the posterior state density (which will only be used as the pro-
posal distribution in the | S-based measurement update step) is ap-
proximated by the GMM

GII
po(xilYi) = 3 af N (xnl PEY) @

g =1

2.2. Measurement update

1. Draw N %\mpl&s{/’\f,f,”;l =1... N} from the proposal dis-
tribution pg (xx|Y) (Equation 9) and calculate their corre-
sponding importance weights

(| X )pe (XY 5—1)
po (XY )

ol =

(10)

2. Normdizetheweights w\” =@/ SN &

3. Use aweighted EM (WEM) agorithm to fit a G-component
GMM to the set of weighted particles {w(”, x";1 =
1... N}, representing the updated GMM approximate state
posterior distribution at time k, i.e.

G
po(xilYi) = 3" N (s P (@)
g=1

The EM algorithm is 'seeded by the G means, co-
variances and mixing weights of the prior state GMM,
po(xk—11Yr—1), and iterated until a certain convergence
criteria (such as relative dataset likelihood increase) is met.
Convergence usually occur within 4-6 iterations.

2.3. Inference

The conditional mean state estimate x, = E[x|Y] can the cor-
responding error covariance P, = E[(xr — %Xx)(xx — fck)T] can
be calculated in one of two ways: The estimates can be calculated
before the WEM smoothing stage by a direct weighted sum of the
particle set,

N N
xe = w0 and Pr= 3wl (20 —50) (" —x0)"
=1 =1

12
or after the posterior GMM has been fitted, (42
G
%, = Z aig)ul(cg) (13)
g=1
G
P = > af (P + () - x)(n - x0)")
g=1

Since N > G, the first approach is computationally more ex-
pensive than the second, but possibly generates better (lower vari-
ance) estimates, sinceit calculates the estimates before theimplicit
resampling of the WEM step. The choice of which method to use
will depend on the specifics of the inference problem.
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3. EXPERIMENTAL RESULTS

In this section the estimation performance and computational cost
of the GMSPPF is evaluated on a state estimation problem and
compared to that of two other particle filter solutions: the stan-
dard sampling importance-resampling particle filter (SIR-PF) [7]
and the Sigma-Point Particle Filter (SPPF) [9, 5]. Due to space
congtraints, only one experiment is presented here, but the reader
isreferred to http://cslu.ece.ogi.edu/misp for more results. The ex-
periment was done using Matlab and the ReBEL Toolkit®. For this
experiment, a scalar time series was generated by the following
process model:

Tk = ¢1xk—1 + 1 + sin(wn(k — 1)) + v (14)

where vy, isaGammaga(3, 2) random variable modeling the pro-
cessnoise, and w = 0.04 and ¢; = 0.5 are scalar parameters. A
nonstationary observation model,

i = G2z + Mg
k P3xr — 2+ ny

is used, with ¢ = 0.2 and ¢3 = 0.5. The observation noise, n,
is drawn from a Gaussian distribution A (ng;0,107°%). Figure 2
shows aplot of the hidden state and noisy observations of the time
series. Given only the noisy observations y, the different filters
were used to estimate the underlying clean state sequence . for
k =1...60. Theexperiment was repeated 100 timeswith random
re-initialization for each runin order to calculate Monte-Carlo per-
formance estimates for each filter. All the particle filters used 500
particles and residua resampling where applicable (SIR-PF and
SPPF only). Two different GM SPPF filters were compared: The
first, GM SPPF (5-1-1), use a 5-component GMM for the state pos-
terior, and 1-component GMMs for the both the process and ob-
servation noise densities. The second, GM SPPF (5-3-1), use a 5-
component GMM for the state posterior, a 3-component GMM to
approximate the “heavy tailed” Gamma distributed process noise
and a 1-component GMM for the observation noise density. The
process noise GMM was fitted to simulated Gamma noise sam-
pleswith an EM algorithm. Both GM SPPFs use I nference M ethod
1 (Equation 12) to calculate the state estimate. Table 1 summa-
rizes the performance of the different filters. The table shows the
means and variances of the mean-square-error of the state esti-
mates as well as the average processing time in seconds of each
filter. The reason why the standard PF performs so badly on this
problem is due to the highly peaked likelihood function of the
observations (arising from the small observation noise variance)
combined with the spurious jumps in the state due to the heavy
tailed process noise. This causes severe “sample depletion” in the
standard PF that uses the transition prior p(zx|xx—1) as proposa
distribution. As reported in [9], the SPPF addresses this problem
by moving the particles to areas of high likelihood through the
use of a SPKF derived proposal distribution, resulting in a dras-
tic improvement in performance. Unfortunately this comes at a
highly increased computational cost. The GMSPPFs clearly have
the same or better estimation performance (with reduced variance)
as the SPPF but at a highly reduced computational cost. The best
performance is achieved by the 5-3-1 GM SPPF that better models
the non-Gaussian nature of the process noise.

SReBEL isaMatlab toolkit for sequential Bayesian inference in gen-
eral DSSMs. It contains a number of estimation agorithms including all
those discussed in this paper as well as the presented GM SPPF. ReBEL is

developed by the MLSP Group at OGI and can be freely downloaded from
http://cslu.ece.ogi.edu/misp/rebel for academic and/or non-commercial use.
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Fig. 2. Nonstationary nonlinear time series estimation experiment.

| Algorithm [ MSE (mean) | MSE (var) | Time(s) |
SIR-PF 0.2517 4.9e-2 1.70
SPPF 0.0049 8.0e-5 35.6
GMSPPF (5-1-0) 0.0036 50e5 1.04
GMSPPF (5-3-1) 0.0004 3.0e-6 2.03

Table 1. Estimation results averaged over 100 Monte Carlo runs.

4. CONCLUSION

We presented anovel algorithm for sequential inference in general
nonlinear non-Gaussian DSSMs. It was shown that this algorithm
not only outperforms standard particle filters, but has equal (or
better) performance when compared to more advanced techniques
such asthe SPPF. In addition, thisincreased performance comes at
adramatic reduction in computational cost, making the GM SPPF
a viable candidate for real-time systems. Furthermore, the GM-
SPPF mitigates the effects of sample depletion by combining the
improved SPKF based proposal distribution of the SPPF, with a
novel WEM based posterior density recovery and smoothing oper-
ation. Thisresultsin increased operational robustness.
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