SEQUENTIAL MONTE CARLO METHOD FOR BLIND EQUALIZATION OF A
NONLINEAR SATELLITE COMMUNICATION CHANNEL

Stéphane Sénécal, Pierre-Olivier Amblard

Groupe Non-Linéaire
Laboratoire des Images et des Signaux
LIS ENSIEG BP 46
38402 Saint Martin d’Héres Cedex, France

ABSTRACT

This paper proposes a sequential Monte Carlo simulation method
for equalizing a satellite communication channel. The main dif-
ficulties encountered are the nonlinear distorsions due to the am-
plifier stage in the satellite. The aim of the method is to blindly
restore the emitted message by considering a Bayesian approach.
Thus, prior knowledge on the modeling of the nonlinearity is taken
into account in the posterior distribution of the input sequence.
Such a distribution is very difficult to study and thus motivates the
implementation of Monte Carlo techniques. This approach makes
it possible to solve the problem for a simplified model. The sim-
ulation scheme dealing with the complete transmission chain uses
the method developed for the simplified model. Performance of
the equalization algorithm is evaluated using Bit Error Rate versus
Signal-to-Noise Ratio curves.

1. INTRODUCTION

The importance of telecommunication since the last decades leads
to consider satellite systems for transmitting information. The
main drawback of this approach is the attenuation of the signal
due to its trip through the atmosphere. Therefore, one aim of
the satellite is to “re-amplify” the signal before sending it back
to the Earth. Because of the lack of space and energy available
on the satellite, Traveling Wave Tube (TWT) amplifiers are often
used for this purpose [1]. Unfortunately, such devices have strong
nonlinear behaviors and thus imply complex processing methods.
Neural-networks algorithms have been successfully implemented
[2, 3, 4] but require a learning/training input sequence for adapt-
ing the parameters of the equalizer. The knowledge of such se-
quences is sometimes impossible: for low Signal-to-Noise Ratios,
SNR, or in non-cooperative communication contexts for instance.
Blind equalization methods have thus to be considered. Many
approaches suppose precise hypothesis on the signals: Gaussian-
ity and circularity [5], and perform identification or equalization
for nonlinear channels if they admit a \Volterra filter representa-
tion [6, 7]. Although such a representation can be succesfully
processed with Viterbi algorithms for identification purposes [8],
a Wolterra modelization is not adequate for equalizing the chan-
nel studied hereinafter, the resulting filter being unstable. More-
over, classical methods do not take fully into account prior knowl-
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edge available on some parametric expressions for TWT ampli-
fiers [1]. This motivates the approach proposed in [9] and in this
paper where a Bayesian framework is considered leading to the
estimation of the posterior distribution of the transmitted symbol
sequence. This distribution is difficult to compute due to the non-
linearity of the model but Monte Carlo simulation methods make
it possible to build a formal blind equalization algorithm. The aim
of this paper is thus to present such an algorithm by extending the
one proposed in [9] to a more robust estimation method also en-
abling in-line processing.

The paper is organized as follows: a brief description of the model
is given in §2. Considering a simpler model leads to a first Monte
Carlo estimation method of the input sequence, described in §3. In
84, the complete model is considered and a particle filtering based
equalization method is proposed. The simulation scheme uses the
algorithm specifically designed for the simpler model. Paragraph
85 is devoted to illustrate performance of the approach on sim-
ulated data. The paper is concluded by discussing some advan-
tages and drawbacks of the algorithm, and some perspectives of
the method.

2. MODELING THE CHANNEL

The complete transmission chain studied is commonly considered
in the field of satellite communication [4] and is depicted in fig-
ure 1. The information signal is a digital sequence of symbols
(er)1<k<k generated at a rate T'. In the following, symbols are
generated from 4-QAM modulations: e = exp(1¢r) Where ¢,
is independently, identically (i.i.d.) and uniformly distributed on
the set {Z, 3%, 52 T} The emission stage is modeled as a 4-
pole Chebychev filter FO whose 3dB bandwitdh equals to %
The emitted signal is distorted by its trip through the atmosphere.
This is modeled by an additive i.i.d. circular Gaussian noise signal
ne(t). The variance a2 of the latter signal practically provides an
uplink SNR around 15dB. The amplitude of the information sig-
nal, denoted as parameter A, is set at the transmitter stage on the
Earth to reach at least such a noise level. The signal is then am-
plified by the satellite and sent back to the Earth. This stage is
performed by a TWT amplifier which is modeled by the following
amplitude gain and phase wrapping [1]:

QT ( )_ a,,rz

A(T) = 1 +,3a7“2 r)= 1 +,8p7“2

)

where r denotes the input signal amplitude and (a, Ba, ap, Bp)

ICASSP 2003




ne(t)
Multipath
fading channel

n(t) ——=t——7—)

Emitted signal Receiver
et) "

Fig. 1. Satellite communication channel

are the coefficients of the TWTA model [1, table 1]. Such a system
may not be inversible but only the amplificative part of the modu-
lus characteristic will be considered [9]. The TWT amplifier lies
between devices F1 and F2 performing the task of multiplexing
and modeled by 4-pole Chebychev filters, whose 3dB bandwidths
equal respectively to 2 and 22. The transmission of the signal
back to the Earth is much less powerful than the previous one be-
cause of straight technical constraints of the satellite. Thus, the
influence of the atmospheric propagation medium is usually mod-
eled by a linear multipath fading channel [4]. Finally, the signal
is additively corrupted by an i.i.d. circular Gaussian noise signal
n(t) whose variance is denoted as 2. The goal is then to recover
the emitted symbol sequence from the only knowledge of the re-
ceived signal, denoted as r(¢), and the type of constellation. Since
this problem is difficult, a simpler model, depicted in figure 2, is
firstly studied. This model focuses on the nonlinearity by omit-
ting the linear filters and the multipath fading channel. The only
perturbations considered are the uplink and downlink noises, and
of course the effect of the TWTA. The equalization of this simple
model is tackled in the following section.

3. MONTE CARLO ESTIMATION TECHNIQUES

In this section, the received signal is supposed to be sampled at
symbol rate T'. The problem is then to estimate a 4-QAM symbol
¢ from a sample r. A Bayesian approach is proposed by consider-
ing the posterior distribution p(¢|r) and its maximum a posteriori
(MAP) associated estimator. A Monte Carlo method is developped
to compute this estimator by using parametric expressions (1) for
the amplifier. If the parameters of the model depicted in figure
2 are known, it is possible to consider the conditional posterior
distribution

p(|A,0e, TWT,0r,7) (2
for the estimation task, TWT denoting the parameters of the am-
plifier, see §2. Applying Bayes formula for (2), the difficulty is
then to estimate the likelihood p(r|A, ¢, 0e, TWT, o). A solu-
tion, developped in [9], consists in writing this expression as the

expectation
1
E {exp <_0_r2 |r — TWT($)|2> } 3

z ~ Nco (AGXI)(W)J:) “)
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Fig. 2. Simple TWTA channel

It is possible to compute Monte Carlo estimates [10] of expression
(3) from sequences of i.i.d. samples (z¢)1<¢<n simulated from
distribution (4):

1 N 1 2
~ > exp (‘; |r — TWT(x)] ) ®)
=1 T

For instance, approximation (5) is computed for an emitted sym-
bol ¢ = % and TWT parameters given by (aa,Ba,p, Bp) =
(2,1,4,9.1), [1, table 1]. The amplitude A is set to 0.5 and vari-
ances of noises are such that SNR. = 10dB and SNR, = 3dB.
100 realizations are simulated for sequences (4) composed of 100
samples each. Mean values and standard deviations of estimates
(5) are depicted in table 1 (left column). Even with a few num-
ber of samples, say 10, it is possible to estimate efficiently the
MAP of distribution (2). However, the approach above requires
the values of the channel parameters. These ones may be not
known or easily estimated for a nonstationary channel or in case
of non-cooperative communication contexts, like passive listening
for instance. When parameters (A, ., TWT, o, ) are unknown,
a solution consists in considering the full posterior distribution
p(¢, A, 0., TWT,a,|r). Such an approach can be implemented
with a Gibbs sampling simulation scheme [9] but do not lead to
significant results in practice for the estimation of the parame-
ters. The approach developped in the following is to consider the
marginal posterior distribution:

p(g]r) = / (6, A, 00, TWT, 0, |r)d(A, 00, TWT, 02) (6)

From the Bayes formula, the integral above can be written as the
expectation

Ep(A,ae JTWT,or) {p(r|¢) A7 Te, TWT7 UT)} (7)

whose computation can be processed thanks to Monte Carlo tech-
niques as exposed previously. Expression (7) is thus approximated
by

1 &

~ 2 p(rle, Ax, oc(k), TW Ty, 07 (K)) ®)

P k=1
where sequences of samples (A, oc(k), TW Tk, 0, (k)) are i.i.d.
and sampled from the prior distribution

p(A, 06, TWT,0,) ©

The simulation algorithm for the full posterior distribution pre-
sented in [9] also requires the setting of prior distribution (9).
Some prior information is generally available for the parameters
of the channel. The TWT amplifier is supposed to work in its
amplificative regime, an uniform prior distribution is then cho-
sen for the amplitude of the input signal A ~ U ;. To reach
a SNR roughly equal to 15dB at the emission stage, it is pos-
sible to infer o. ~ Ujp.01,0.5). Coefficients of expressions (1)
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¢ | p(Blr, A, 06, TWT, o) p(¢[r)

I 0.69 +0.28 0.61+0.21
ST" 0.13+0.21 0.23+0.20
5% 0.02 +0.05 0.05 + 0.03
%’ 0.16 +0.24 0.12+0.14

Table 1. Monte Carlo estimates

are supposed to be independent from the other parameters and
also one with each other. Considering values experimentally mea-
sured and presented in [1], a possible prior distribution is given by
(Oﬁa, ,Ba, Qp, ﬂp) ~ Z’{[I,S] X u[o,z] X U[1,5] X U[Q,IO]' The extremal
values of standard deviation o, of the noise signal at the receiver
can be estimated from amplitudes of the other parameters. In the
following, a distribution 2/, 1,1.1; is considered. Once prior dis-
tribution (9) is defined, it is possible to implement a Monte Carlo
estimation method for (7) thanks to approximations (8) and (5).
For instance, expression (8) is considered with the same parameter
values as in the numerical experiments run for known values. 100
realizations are simulated where sequences

(Ag, 0e(k), TWTy, 0 (k))1<k<n, (10)

composed of 100 samples generated from (9) are considered. For
each sample, expressions (5) are computed with a sequence (10)
of 10 samples each. Mean values and standard deviations of esti-
mates (8) are depicted in table 1 (right column). Even with a few
number of samples, say 10, it is possible to estimate robustly the
MAP of (6). Numerical values are of the same order than the ones
obtained in case of known parameters. Using the marginalized
posterior distribution (6) seems thus a good strategy. A simulation
method based on the Monte Carlo techniques developped above
is proposed in the following section for equalizing the complete
transmission chain.

4. PARTICLE FILTERING EQUALIZATION METHOD

The equalization of the satellite communication channel depicted
in figure 1 is a difficult task as several phenomenons have to be
dealt with :

1. The unknown parameters of filters FO, F1 and F2
2. The multipath fading channel for the downlink transmission

3. The correlation induced by the filters and fading model for
the received signal

The approach proposed still consists in considering the posterior
distribution of the samples of the emitted signal conditionally to
the samples of the received signal

p((e(iTecr))1<j<m|(r(iTech))1<j<m) (11)

A Bayesian estimation procedure is implemented by computing
the MAP estimator of distribution (11). Monte Carlo estimation
techniques developped in §3 are modified in order to take into ac-
count the parameters of the complete transmission chain, cf. points
1. and 2. above. In fact, the main problem is to estimate the num-
ber of samples per symbol duration p = ~L—, as parameters of

TEC
filters FO, F1 and F2 depend on this paramete}rL. This can be done

by computing the correlation of the received signal [9]. This cor-
relation can also be used explicitely in a recursive equalization al-
gorithm as shown below. Many applications in telecommunication
require in-line processing methods [11]. Sequential Monte Carlo
simulation algorithms are thus investigated. A simulation scheme
based on particle filtering techniques is considered for simulating
distribution (11). The main idea is to generate sequences of parti-
cles

(€i(0), ei(Tecn), - - - s €i(jTecn) )1<i<n (12)
iteratively which are sampled from desired distribution (11). In
the present case, the phase samples ¢(jTecr) = ¢(j) of the emit-
ted signal are directly simulated. The sampling scheme is now
described:

Equalization algorithm

1. initialization: sanple ¢;(0) as i.i.d.
4- QAM synbol s for 4=1,...,N; set j=1

2. inportance sanpling: sinulate
$i(j) ~ p(@(7)|$i (G — 1)) (13)
for 4=1,...,N; actualize the sanple path

[&(0),...,@(]')] =
(410,646 = 1),6:(7)]
3. Conpute the weights

@i(j) =p(r(§)|gs (i) x wi(G—1)  (14)
and normalize them

4. selection of the particles: resanple
the N particles (¢:(0),...,¢:(j)) from
(¢i(0),...,¢:(j)) according to their
wei ght s.

5. j«j+1 and go to (2)

It is possible to take into account parameter p in the simulation
method by sampling candidates from prior distribution (13) de-
fined as follows:

set i(j) = ¢i(j —1)
e prob zl,: sanpl e ¢:(j) as a 4- QAM synbol

The computation of weights (14) is processed thanks to analogeous
Monte Carlo techniques as the ones developped previously, includ-
ing now the parameters of the filters in expressions (3) and (6). As
the variable of interest is discrete, a few numbers of particles are
required, say some dozens. On the other hand, this property imply
a strong degeneracy phenomenon for the weights [11] but this is
not really a drawback in the present case as the simulation scheme
is used for MAP estimation purposes. The algorithm is now tested
on simulated data.

e prob 12

5. NUMERICAL EXPERIMENTS

The equalization method is runned for 100 realizations of sequences
composed of 1000 samples each considering various downlink

SNR,. for a fixed uplink SNR.=15db. The number of samples re-
ceived per symbol duration is set to p = 8. For each realization,
the estimated symbol sequence is taken as the MAP sample path
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Fig. 3. BER of estimated signals (mean and =+ std. deviation of
the MAP, MLP estimates dotted) versus SNR,. in dB, SNR.=15dB

computed from a distribution (12) of 50 particles. The weights
(14) are approximated by Monte Carlo techniques considering se-
quences of 10 samples each. Mean values (straight line) and its
standard deviations (dots) of the estimated Bit-Error-Rates (BER)
are depicted in figure 3. Simulation results runned for a neural
network equalization method (2-10-4 MLP with hyperbolic acti-
vation functions) are also depicted in dashed lines in figure 3. The
BER computed with this method are roughly of the same order
as the ones obtained with the particle filtering approach but MLP
algorithms requires at least the use of learning sequences of 100
samples length in this case. The algorithm is also tested for other
values of uplink SNR : 10dB and 12dB. The mean values of BER
computed from the estimated phase samples are depicted in figure
4 for these values of SNR.. The curves from the bottom to the
top of the figure are associated to a decreasing SNR . A charac-
teristic of the proposed equalization method is to be robust with
respect to nonstationarities of the channel. This property comes
from the consideration of the marginalized posterior distribution
(6). Numerical experiments runned with perturbations of the chan-
nel parameters lead to similar results as those presented in figures
3 and 4. On the contrary, in case of dysfunction of the amplifier
or sudden change of the intensity of noises, the algorithm remains
insensitive to these variations. The approach developped thus can-
not be used for diagnostic purposes like neural networks methods
for instance [3]. However, a significant advantage of the proposed
method is not to require any learning input sequence. The algo-
rithm is then efficient for blind communication tasks. A calibra-
tion step is however necessary in order to estimate parameter p;
this tuning can be processed by computing the correlation of the
received signal.

6. CONCLUSION

The equalization method presented in this paper makes it possible
to estimate symbol sequences transmitted through a satellite com-
munication channel and to take into account explicitely the nonlin-
ear distorsions induced by its amplification stage. The algorithm
studied is based on sequential Monte Carlo methods, precisely on
a particle filtering scheme. This approach enables a recursive esti-
mation procedure of the emitted signal. A Bayesian point of view
is adopted by considering the posterior distribution of the sampled
symbol sequence, marginalized with respect to the parameters of
the channel, and its MAP estimator. The method is thus robust
for facing nonstationarities of the channel but cannot be used to
detect the latter. As many practical implementations of particle fil-
tering simulation methods, the algorithm is more computing time
demanding as classical approaches. However, the method does not

10"
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Fig. 4. BER of estimated signals (mean of the MAP) versus SNR,.
in dB, SNR.=10, 12 and 15dB

require the knowledge of training/learning input sequences for the
equalization of the channel, which is a very interesting property
for blind communication.
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