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ABSTRACT

For a given computational complexity, the Viterbi algorithm ap-
plied on the discrete representation of the state space provided by a
standard particle filtering, outperforms the particle filtering. How-
ever, the computational complexity of the Viterbi algorithm is till
high. In this paper, we propose to use the M and T agorithmsin
order to reduce the computational complexity of the Viterbi algo-
rithm and we show that these algorithms enable a reduction of the
number of particles up to 20%, practically without loss of perfor-
mance with respect to the Viterbi agorithm.

1. INTRODUCTION

Many real systems of data analysis require the estimation of un-
known quantities from measures provided by sensors. In general,
the physical phenomenon can be represented by a mathematical
model, which describes the time evolution of the unknown quan-
tities called hidden state and their interactions with the observa-
tions. Often, the observations arrive sequentially in time and it
is of interest to update at each instant the estimation of the hid-
den state. Except in afew special cases, including linear Gaussian
state space models and hidden finite-state space Markov chains,
it isimpossible to derive an exact analytical solution to the prob-
lem of sequential estimation of the hidden state. For over thirty
years, many approximation schemes have been proposed to solve
this problem and recently, the approach which receives the ma-
jor interest is based on the particle filtering techniques [1]. These
methods allow to approximate iteratively the posterior distribution
of the hidden state given the observations by weighted points or
particles which evolve in the state space. Therefore, the particle
filtering gives a discrete approximation of the state space of a con-
tinuous state space model.

In [2], the estimation of the hidden state using a standard par-
ticlefiltering is compared to the estimation done by the Viterbi Al-
gorithm (VA) [3]-[4], where the trellis is built from the discrete
representation of the state space provided by the particle filter-
ing. For a given computational complexity, the VA outperforms
the standard particle filtering. However, the computational com-
plexity of this solution is still high since the VA analyzes al the
possible paths arriving to each particle.

In this paper, we propose to apply the M agorithm [5] and the
T algorithm [6] in order to reduce the computational complexity
of the VA built on the particle states. This paper is organized as
follows. In Section |1 the system model is presented. The structure
of the standard particle filtering is introduced in Section I11. Sec-
tion IV describes the VA, the M and the T algorithms built on the
particle states. Finally, simulation results are given in Section IV.
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2. THE STATE SPACE MODEL

The standard Markovian state space model is represented by the
following expressions:

T =

Y =
where &k > 1 is a discrete time index, wy and vy are indepen-
dent white noises. The functions f and i can involve nonlinearity
and the noises wy, and vy, can be non Gaussian. The first equa-
tion describes the time evolution of the hidden state x;, and the
second equation shows the interactions between the observation
yr and the hidden state. In this paper, we consider the filtering
problem yielding the estimation of the hidden state , at atime ¢
from the observations y1.: = {y1,- -, y:+}. The estimation of the
hidden state can be obtained by the Minimum Mean Square Error
(MM SE) method or by the Maximum A Posteriori (MAP) method.
The MM SE solution is given by the following expectation:

f(@h—1, wk)
h(l‘k, ';k) ’ (1)

2y = Elze|yr]- )

The calculation of (2) involves the knowledge of the filtering dis-
tribution p(x¢|y1:¢). When this distribution is multimodal, the
MM SE estimate is located between the modes and is far from the
true value of the hidden state. In this casg, it is preferable to use
the MAP method, which provides the estimate of the hidden state
sequence x1.y = {x1, -, Te}:

1.4 = aI‘inlaXp(l'l:t|y1:t)~ ©)
T1:t

The calculation of (3) requires the knowledge of the posterior dis-
tribution p(x1:¢|y1:¢).

3. THE STANDARD PARTICLE FILTERING

The aim of the standard particle filtering is to approximate recur-
sively in time the posterior distribution p(x1.¢|y1.+) with weighted
particles:

5(.%1 75671)7 (4)
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where N isthe number of particles, @ isthe normalized weight as-
sociated with the particle i and § (), — =%,) denotesthe Dirac delta
centered in z, = & for k = 1,--- ,t. Theiteration is achieved
by evolving the particles from time 1 to time ¢, using the Sequen-
tial Importance Sampling and Resampling (SISR) methods [7]. In

ICASSP 2003




general, an initia distribution p(zo) of the hidden state is avail-
able. Initially, the supports {zf;i = 1,---, N} of the particles
are drawn according to the initial distribution. The evolution of
the particles from time k to time k + 1 is achieved with an impor-
tance sampling distribution [8]. At each time k the particles are
drawn according to the importance function 7 (zx|zo:k—1, Y1:k)-
The importance function enables to calculate recursively in time
the weights associated with the particles:
() |2, —15 Y1:k)

wherek > 1,i = 1,--- N and w§ = 1/N, Vi. the normalized
weights are given by:
i "Ui

Z]N:I wy,
This algorithm presents a degeneracy phenomenon. After a few
iterations of the algorithm, only a particle has anormalized weight
amost equal to 1 and the other weights are very closeto zero. This
problem of the SIS method can be eliminated with aresampling of
the particles. A measure of the degeneracy is the effective sample
size Ny [9]-[10], estimated by:

~ 1
Netr = =v——=-
S ()2

When Neff is below a fixed threshold Nij..s, the particles are
resampled according the weight distribution [7]. After each re-
sampling task, the normalized weights areinitialized to 1/N.

The optimal importance function, which minimizes the degen-
eracy of the SIS algorithm, is given by:

@)

7T(33k|$0:k717y1:k) = p(l’k‘xkflvyk)- ®

In the general case of nonlinear non Gaussian state space model,
(8) cannot be evaluated in an analytical form. It is only possible
to calculate (8) exactly, when the noises w;, and v are Gaussian
and the function A is linear. If wy and vy, are Gaussian and h is
nonlinear, we can obtain an approximation of (8) by linearizing
thefunction hinz, = f(xx—1,wy) [7]. A simpler choice for the
importance function is represented by the prior distribution:

7 (zk]To:k—1,Y1:k) = P(Tk|Tr—1), )

however, this method can be inefficient since the state space is
explored a priori without taking account of the observations.

Using the SISR methods, we can provide a MM SE of the hid-
den state at each time k:

T /mkp($k|y1:k)d$k
_ / o

N . .
= Y iy (10)
=1
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For the MAP estimate, the maximization in (3) is only performed
on the N sequences of particles. Applying the Bayes theorem to
the posterior distribution at atime &:

X Tk | Ll —
(k) _ pyklzr)p(zk|ze—1)
p(yk|yl:k71)

p(ﬂvl:k—1|y1:k—1)7 (11)
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Fig. 1. Application of the VA in aparticletrellis (N = 4).

we observe that the posterior distribution in (3) associated at each
particle can be processed iteratively:

Ao = Moo1 + Inp(yel|zh) + Inp(zh|zh_y), (12)

where we have omitted the normalization term identical for each
particle and A%, denotes the metric of the particle i at time k. At
timet, the MAP estimate coincides with the path in the state space
of the particle with maximum ¢,

4. COMPLEXITY REDUCTION OF THE VITERBI
ALGORITHM

TheVA, introduced by Viterbi in 1967 [3] and analyzed in detail by
Forney in 1973 [4], is a dynamic programming algorithm, which
provides an iterative way of finding the most probable sequence
in the MAP sense of hidden states of a finite-state discrete-time
Markov model. It reduces the complexity of the problem by avoid-
ing the necessity to examine every path through the trellis. How-
ever, in the most general case of a continuous-state space model,
the VA cannot be applied. In[2], the authors have proposed to per-
form the VA on the discrete trellis built by a SISR technique. Each
particle represents a state with a metric expressed by (12). An ex-
ample of aparticletrellisisrepresented in Fig. 1. We consider the
generic transition from time & — 1 to time k. At time k, the VA
analyzes all the possible paths which reach the arrival particle pa,
for p, = 1,---, N. The metric associated with a possible path in
the particle trellis from a departure particle py at time k — 1 to p,
isgiven by:

At =00+ Inp(yelep®) + np(ap® fap® ). (13)

Among these paths from all the p4 to p,, only the path with the
maximum metric is kept. At the final instant ¢, the MAP estimate
of the hidden state sequence coincides with the path of the par-
ticle with maximum metric. |f the computational complexity of
the SISR agorithm is proportional to the number N of particles,
the computational complexity of the VA is proportional to N2. In
[2], the authors have shown that the VA processed on a trellis of
N particles outperforms a SISR agorithm with N2 particles. The
problemisthat N2 can assume very high values. In this paper, we
propose to reduce the computational complexity of the VA using
the M and T algorithms, while keeping the same performance.
The M algorithm retains the M best paths, with M less than
the total number of states, from one iteration to the next one. In
the other hand, the T algorithm keeps variable number of paths
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Fig. 2. Application of the M algorithmin aparticletrellis(INV = 4,
M = 2).

depending on the threshold parameter T'. First, let's modify the M
algorithm on the particle trellis built by the SISR algorithm.

At time 1, we consider al the possible paths from the depar-
ture particles p, to the arrival particles p, and we retain one path
for each p,, asin the VA. At that time, we introduce a new step.
From the N arrival particles we keep the M particles with the best
metrics, where M < N. At the next time 2, the number of depar-
ture particlesis M and of arrival particlesis N. Therefore, only
M N paths from pg to p, are possible. At time 2, we retain the
M particles with the best metrics and go through the trellisin this
way up to the fina time ¢t. The path of the particle with maxi-
mum metric at time ¢ represents the MAP estimate of the hidden
state sequence, asinthe VA. ThisM algorithm has a computational
complexity proportional to M N. An exampleisshownin Fig. 2.

Let’'sconsider now the T algorithm. At time 1, we perform the
VA. Then, among the arrival particles we determine the particle
with the maximum metric. We calcul ate the difference between the
maximum metric and metrics of the other arrival particles. When
this difference is greater than a given threshold T, the particle is
discarded. At the next time 2, the departure particlesare Ny < N
and the arrival particlesare N. Asthe consegquence, only consider
N1 N paths from pg to p,. At time 2, we retain the N, particles
which have survived the threshold test and go through thetrellisin
this way up to the final time ¢t. The path of the particle with max-
imum metric at time ¢ represents the MAP estimate of the hidden
state sequence, as in the VA. This T algorithm has a mean com-
putational complexity proportional to NN, where N is the mean
number of survivor particles at each instant. An example is given
inFig. 3.

5. SSIMULATION RESULTS

In order to compare the simulation results of the standard SISR,
Viterbi, M and T algorithms, we consider the following nonlinear
Gaussian state space model [11]-[12]-[2]:

{o -
Ye =
where the timeindex 1 < k& < ¢ with ¢t = 200, the density of
the initial hidden state zo is Gaussian with zero mean and vari-

ance 5 and wy, and v, are mutually independent white Gaussian
noises with zero mean and variance respectively equal to 10 and

3Tk—1 + 25551 4 8 cos(1.2k) + wy
“k—1

. (1)
20 + vk
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Fig. 3. Application of the T algorithm in a particle trellis (N = 4,
N =2).

Filtering distribution

Fig. 4. Filtering distribution.

1. In this case, the filtering distribution p(zx|y1.x) can be bi-
modal, as illustrated in Fig. 4. This figure is obtained by ap-
plying a SISR with N = 1000 particles, an importance function
m(Tk|To:k—1, Y1:k) = P(xk|Tr—1) and aresampling step made at
each time (bootstrap filter, [11]).

To evaluate the performance of the different algorithms ex-
posed above, we use the mean of the absolute value of thefiltering
error on N,, = 100 realizations of the algorithms:

| o L
Merr = F Zmerr(n) = F E E Z |2Ck(n) - jk(n)|a
" n=1 " k=1

n=1
(15
where m.,(n) is the mean of the absolute value of the error fil-
tering for the realization n and z (n) isthe hidden state at time
for the realization », and the variance of this error:

1
Ugrr = Ozr'r' (n)

-~ %i(|m<n)_m(n>|—mm<n>)2(16)

where o2, (n) isthe variance of the absolute value of the error fil-
tering for the realization n. For the standard particle filtering, we
use a SISR algorithm with an importance function calculated by
linearizing the observation model (14) and a resampling threshold
Ninres = N/5. We consider only the MAP estimate which in this
case gives the better performance because the filtering distribution
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SISR MAP algorithm Viterbi algorithm
N Mean Variance Mean Variance
100 | 0.906583 | 3.029062 | 0.870553 | 5.982229
250 XXXX XXXX 0.849045 | 5.219399
500 XXXX XXXX 0.804020 | 3.936105
1000 XXXX XXXX 0.784171 | 3.394146

Table 1. Performance of the SISR and Viterbi algorithms.

M algorithm
N M Mean Variance
100 90 | 0.878995 | 6.145979
80 | 0.910603 | 6.684327
250 | 225 | 0.853668 | 5.273226
200 | 0.871307 | 5.648677
500 | 450 | 0.808492 | 4.013840
400 | 0.834472 | 4514141
1000 | 900 | 0.795176 | 3.545520
800 | 0.807538 | 3.827843

Table 2. Performance of the M algorithm.

can be bimodal. The obtained results are shown in Tables 1, 2 and
3. In Table 1, the SISR algorithm and the VA have the same com-
putational complexity proportional to N2, since the first one uses
N? particles. We notice that for a given computational complex-
ity, the VA outperforms the standard particle filtering. In Table 2,
the computational complexity of the M algorithm is proportional
to MN. If M islessthan N by 10%, we have aimost the same
performance than the VA. Nevertheless, if we reduce the number
of particles by 20%, the performance degrades. In Table 3, the
mean computational complexity of the T algorithm is proportional
to NN. We observe that the T algorithm presents better perfor-
mance than the one of the M algorithm. Applying the T algorithm,
we can reduce the number of particles up to nearly 20% practically
without loss of performance with regard to the VA.

6. CONCLUSION

In this paper, we have analyzed the problem of the estimation of
a nonlinear non Gaussian hidden state, solved generaly with the
SISR algorithm. The particles of the SISR algorithm provide adis-
crete representation of the state space. If we seethe particlesasthe
states of atrellis, we can search for the most likely sequence using
the VA. We have shown that for a given complexity, the VA out-
performs the SISR agorithm. However, the computational com-
plexity of this solution is still high. As the consequence, we have
proposed the M and the T algorithms in order to reduce the com-
putational complexity of the VA. We can conclude that these al-
gorithms enable a reduction of the number of particles up to 20%,
practically without loss of performance with regard to the VA.
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