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ABSTRACT

The polynomial model is commonly used in predistorter
design. However, the conventional polynomial model ex-
hibits numerical instabilities when high-order terms are in-
cluded. In this paper, we introduce a novel set of orthog-
onal polynomial basis functions for predistorter modeling.
Theoretically, the conventional and the orthogonal polyno-
mial models are “equivalent” and thus should have the same
performance. In practice, however, the two approaches can
perform quite differently in the presence of quantization
noise and with finite precision processing. Simulation re-
sults show that the orthogonal polynomials can alleviate the
numerical instability problem associated with the conven-
tional polynomials and generally yield better predistortion
linearization performance.

1 INTRODUCTION

Power amplifier (PA) is a major source of nonlinearity in a
communication system. To increase efficiency, PAs are of-
ten driven into their nonlinear region, thus causing spectral
regrowth (broadening) as well as in-band distortion. PA lin-
earization is often necessary to suppress spectral regrowth,
contain adjacent channel interference, and to reduce bit er-
ror rate (BER).

Among all linearization techniques, digital baseband pre-
distortion is one of the most cost effective. A predistorter,
which (ideally) has the inverse characteristic of the PA, is
used to compensate for the nonlinearity in the PA. To lin-
earize a memoryless nonlinear PA, the polynomial model is
a common choice and is widely used in predistorter model-
ing [1, Sec. 3.3]. In practice, however, the polynomial model
may experience numerical difficulties when high-order poly-
nomial terms are included [1, p. 86]. Volterra series and
certain special cases of the Volterra series, for example, the
Hammerstein model [2] and the memory polynomial model
[3], have been proposed for predistorter design that includes
memory effects.

To the best of our knowledge, [4, 5] are the only published
results on orthogonal polynomials for predistorter design.
Our approach is different and has the following advantages:
(i) Our orthogonal polynomial basis functions are expressed
in closed form (non-iterative), and the coefficients are free of
round-off errors. (ii) Our basis functions are pre-determined
and can be implemented with little demand on the compu-
tation resources. In [4, 5], the basis functions are calculated
online and iteratively, thus requiring much more computa-
tional power. (iii) Our basis set consists of both even and
odd-order terms whereas that of [4, 5] allows odd-powered
series only. Moreover, our basis function expressions are for

∗This work was supported in part by the National Science
Foundation grant MIP 9703312, the State of Georgia’s Yamacraw
Initiative, and Danam USA Incorporated.

generally complex-valued baseband data; their application
to nonlinear systems with memory is also prescribed.

In Section 2, we describe the conventional polynomial
model and point out its deficiencies. In Section 3, we derive
novel orthogonal polynomial basis functions which are nu-
merically more stable than the conventional one. In Section
4, simulation results are presented to illustrate the bene-
fits of the orthogonal polynomials. Finally, conclusions are
drawn in Section 5.

2 THE POLYNOMIAL MODEL

We consider the indirect learning architecture [6] as shown
in Fig. 1. The baseband predistorter input is denoted by
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Figure 1. Indirect learning architecture.

x(t), the baseband predistorter output/PA input is denoted
by z(t), and the baseband PA output is denoted by y(t).
The feedback path labeled “Predistorter Training Branch”
(block A) has y(t)/G as its input, where G is the intended
gain of the PA, and ẑ(t) is its output. The actual predis-
torter (copy of A) is an exact copy of the predistorter train-
ing branch. When y(t) = Gx(t), the error e(t) = z(t)− ẑ(t)
is 0. To reduce the error between y(t) and Gx(t), we choose
the predistorter parameters that minimizes the error e(t).
The benefit of the indirect learning architecture is that, in-
stead of assuming a model for the PA, estimating the PA
parameters and then constructing its inverse, we can go di-
rectly after the predistorter1.

For the predistorter training branch, if an all-order (even
and odd) polynomial model [7] is adopted, we have,

ẑ(t) =

K
∑

k=1

ak

∣

∣G−1y(t)
∣

∣

k−1
G−1y(t). (1)

Define the polynomial basis function φk(x) = |x|k−1x, Eq.
(1) becomes

1The term “indirect learning” seems counter-intuitive here,
since the predistorter is learned directly; it is the PA character-
istics that are learned indirectly.
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ẑ(t) =
K

∑

k=1

ak φk(G−1y(t)). (2)

Based on a set of PA input/output measurements, z =
[z(t1), . . . , z(tN )]T and y = [y(t1), . . . , y(tN )]T , a simple
least-squares (LS) estimator is obtained for the coefficients,
a = [a1, . . . , aK ]T :

âLS =
(

Y
H
Y

)

−1

Y
H
z, (3)

where Y = [φ1(G
−1y) φ2(G

−1y) . . . φK(G−1y)], and for
1 ≤ k ≤ K, φk(y) = [φk(y(t1)), . . . , φk(y(tN ))]T . Once
the coefficients âLS are found, they are plugged into the
predistorter. This procedure can be repeated iteratively.
Such iterative procedure enables the predistorter to adapt
to a slowly time-varying PA.

The inversion of the matrix YHY in (3) can experience
a numerical instability problem. Let us assume for simplic-
ity, G = 1. Consider y(t1), . . . , y(tN ) identically distributed
whose magnitude |y(ti)| is uniformly distributed in [0, 1].
It can be shown that E[ 1

N
YHY]kl = 1

k+l+1
(See the Ap-

pendix). This matrix is known as a segment of the general-
ized Hilbert matrix with p = 2 [8], which is ill-conditioned.
The condition number (norm 2) of a matrix is defined as
ρ =

∣

∣

λmax
λmin

∣

∣, where λmax and λmin are its maximum and min-

imum eigenvalues, respectively. It can be used to predict
the numerical stability associated with matrix inversion. In
general, when the condition number is much larger than 1,
the numerical error involved in inverting the matrix can be
significant.

3 ORTHOGONAL POLYNOMIALS

To alleviate the numerical instability problem associated
with the basis set Φ = [φ1(x), φ2(x), . . . , φK(x)]T in (2), we
consider orthogonal polynomials. To derive a set of orthog-
onal polynomial basis, Ψ = [ψ1(x), ψ2(x), . . . , ψK(x)]T ,
which spans the same space as Φ, we consider the following
requirements:

1. Orthogonality: any two different basis functions, ψk(x)
and ψl(x), are orthogonal; i.e., 〈ψk(x), ψl(x)〉 = 0 for
k 6= l, and 〈ψk(x), ψk(x)〉 = dk > 0. The inner product
〈ψk(x), ψl(x)〉 is discussed in detail in the Appendix.

2. Form of the polynomial basis: we consider polyno-
mial basis ψk(x) =

∑k

l=1Bkl φl(x) =
∑k

l=1Bkl|x|
l−1

x, where Bkl is a generally complex-valued coefficient.
Note that ψk(x) has order k.

Therefore, we seek a lower triangular matrix B, with [B]kl

= Bkl for k ≥ l and 0 otherwise, to construct the basis
Ψ = BΦ satisfying:

〈Ψ,Ψ〉 = B 〈Φ,Φ〉BH = diag(d1, . . . , dK), (4)

where 〈Ψ,Ψ〉
kl

= 〈ψk(x), ψl(x)〉, and diag(d1, . . . , dK) de-
notes a diagonal matrix with [diag(d1, . . . , dK)]

kk
= dk. As

we show in the Appendix, the (k, l)th element of 〈Φ,Φ〉 is
E[rk+l]; i.e., the (k+ l)th-order moment of r = |x|. For ex-
ample, when r ∼ U [0, 1]; i.e., r is uniformly distributed in
[0, 1], 〈Φ,Φ〉

kl
= 1

1+k+l
. Given a probability density func-

tion (PDF) of r, the orthogonal polynomial basis construc-
tion problem becomes finding the lower triangular matrix
B such that B 〈Φ,Φ〉BH is diagonal. Therefore in theory,
orthogonal polynomials are tied to the PDF of the signal
amplitude.

When r ∼ U [0, 1] and with the requirement that the
squared norm of the basis to be preserved; i.e., ‖ψk(x)‖2 =

‖φk(x)‖2 = 1
2k+1

, we show in [9] that the matrix B that
solves this problem is

Bkl = (−1)l+k (k + l)!

(l − 1)!(l + 1)!(k − l)!
. (5)

Therefore, the kth-order orthogonal polynomial basis func-
tion for the |x| ∼ U [0, 1] distribution is

ψk(x) =

k
∑

l=1

(−1)l+k(k + l)!

(l − 1)!(l + 1)!(k − l)!
|x|l−1x. (6)

Table 1 shows the first 5 such orthogonal polynomials.
If x were real-valued, applying the same procedure to or-
thogonalize the basis {1, x, x2, . . . , xK} (i.e., adding the x0

term) would yield the shifted Legendre polynomials [10].
Although the construction of orthogonal basis is often an
iterative procedure, we were able to obtain novel, closed
form expression (6) for complex-valued x(t).

Table 1. Orthogonal polynomial basis functions ψk(x)
for 1 ≤ k ≤ 5.
ψ1(x) = x
ψ2(x) = 4|x|x− 3x
ψ3(x) = 15|x|2x− 20|x|x+ 6x
ψ4(x) = 56|x|3x− 105|x|2x+ 60|x|x− 10x
ψ5(x) = 210|x|4x− 504|x|3x+ 420|x|2x− 140|x|x+ 15x

The orthogonal polynomial predistorter in the training
branch is given by:

ẑ(t) =
K

∑

k=1

ck ψk(G−1y(t)). (7)

Therefore, the LS estimator for the coefficients c =
[c1, c2, . . . , cK ]T is

ĉLS =
(

M
H
M

)

−1

M
H
z, (8)

where M = [ψ1(G
−1y) ψ2(G

−1y) . . . ψK(G−1y)], and for
1 ≤ k ≤ K, ψk(y) = [ψk(y(t1)), . . . , ψk(y(tN ))]T .

Since ψk(x) is a linear combination of {φl(x)}
k
l=1, models

(7) and (2) are equivalent, in theory. However, in practice,
sampling the input and output of a PA using a finite pre-
cision A/D converter may introduce error to the samples.
Furthermore, since obtaining the LS estimates of the pre-
distorter coefficients requires a matrix inversion (see (3)),
the digital signal processor (DSP) precision may impact the
accuracy of the resulting matrix inverse. To avoid numer-
ical problems due to quantization and finite precision cal-
culations in the DSP, the eigenvalue spread should be min-
imized. In the case where y(t) is uniformly distributed in
amplitude between 0 and 1, the condition number, ρ, for
the matrix YHY (3), increases with the matrix dimension
exponentially. In contrast, when orthogonal polynomials
are used; i.e., when matrix MHM (8) is used, the con-
dition number is only ρ = 2K+1

3
when |x(t)| is uniformly

distributed in [0, 1].
The set of orthogonal polynomial basis (6) derived earlier,

can be extended to built a predistorter with memory.
In the memory case, we assume uniform sampling with

the sampling period of T . The memory polynomial predis-
torter model, which has the form,

ẑ[n] =

K
∑

k=1

Q−1
∑

q=0

akq φk

(

G−1y[n− q]
)

, (9)

where y[n] = y(tn) = y(nT ) and z[n] = z(tn) = z(nT ),
is shown to be a robust predistorter model for PAs with
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memory [3], where K is the highest polynomial order, and
Q − 1 is the maximum delay. The coefficients akq can be
obtained using least squared method.

We propose to construct an orthogonal memory polyno-
mial predistorter as follows:

ẑ[n] =

K
∑

k=1

Q−1
∑

q=0

akq ψk

(

G−1y[n− q]
)

, (10)

where ψk(·) is the orthogonal polynomial basis function (6).
Although orthogonality still holds for ψk(G−1y[n− q1]) and
ψl(G

−1y[n− q2]) when q1 = q2, it doesn’t hold for q1 6= q2
due to the correlation introduced by the common terms.
However, we still expect that the predistorter (10) exhibits
better numerical stability as compared to (9). Result for
the performance of the memory orthogonal polynomials are
presented in [9].

4 NUMERICAL EXAMPLES

In this section, we would like to explore the benefits of ap-
plying orthogonal polynomials to the predistorter design.

4.1 Robustness of Orthogonal Polynomials

The simulation environment is C, floating point data with
64-bit precision accuracy. Although the set of orthogonal
basis functions (6) (see also Table 1) are derived assuming
that the input amplitude, r = |x|, is uniformly distributed,
we would like to show that such basis functions are benefi-
cial even if r is not uniformly distributed. Let us consider
the truncated Rayleigh distribution,

fr(r) =

{

1

1−e
−

1
2σ2

r

σ2 e
−

r
2

2σ2 , 0 ≤ r ≤ 1,

0, otherwise,
(11)

and the truncated exponential distribution,

fr(r) =

{

1

1−e
−

1
λ

1
λ
e−

r

λ , 0 ≤ r ≤ 1,

0, otherwise.
(12)

Consider as examples, five specific distributions of r: (i) r
is uniformly distributed between 0 and 1; (ii) r is truncated
Rayleigh distributed (c.f. (11)) with σ2 = 0.1086; (iii) r is
truncated Rayleigh distributed (c.f. (11)) with σ2 = 0.5;
(iv) r is truncated exponentially distributed (c.f. (12)) with
λ = 0.2127; (v) r is truncated exponentially distributed
(c.f. (12)) with λ = 1.

Fig. 2 shows the condition number for the matrix YHY
(which is an empirical estimate of N 〈Φ,Φ〉) for each of the
PDFs. We note that, for each PDF, the condition number
grows exponentially with the polynomial order K. Fig. 3
shows the condition number for the matrix MHM (which
is an empirical estimate of N 〈Ψ,Ψ〉) for each of the PDFs,
which increases at a much slower rate asK increases and are
within 100 for the cases tested. The low condition number
will ensure good numerical stability when finite precision
computation of the predistorter coefficients is carried out.

4.2 Predistorter design

The simulation environment in this section is C, floating
point data with 32-bit precision accuracy. An example
is given to demonstrate how the numerical problems as-
sociated with estimating the predistorter coefficients affect
the performance of the predistorter in terms of spectral re-
growth suppression. We utilize the system shown in Fig.
1 to perform predistortion linearization. The predistorter’s
input, x(t), is a three carrier UMTS signal. Both conven-
tional polynomials and orthogonal polynomials are consid-
ered for the construction of the predistorter with orders
K = 7.
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Figure 2. Condition number of YHY for the PDFs given in
(i)-(v).
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Figure 3. Condition number of MHM for the PDFs given in
(i)-(v).

The PA has the following input/output relationship (arc-
tan model):

y(t) =
(

α1 tan−1(β1|z(t)|) + α2 tan−1(β2|z(t)|)
)

ej∠z(t), (13)

where α1 = 8.0034 − j4.6116, α2 = −3.7717 + j12.0376,
β1 = 2.2690, and β2 = 0.8234. This PA model fits well
measured data from an actual class AB PA. The intended
linear gain is set to G = 7.

Fig. 4 shows the PSD at the output of the PA for the
conventional polynomial predistorter with a polynomial or-
der K = 7. The PSD is presented for iterations 15, 18,
and 21, respectively and shows no sign of convergence. In
contrast, Fig. 5 shows the PSD at the output of the PA for
the orthogonal polynomial predistorter with the same order
K = 7. In this case, the predistorter shows stability and
effectiveness.
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Figure 4. Conventional polynomial predistorter example with
K = 7. Dash dotted line shows the PA output PSD without
predistortion; solid lines show the PA output PSD with pre-
distortion (results are shown for iteration numbers 15, 18 and
21); dashed line shows the PA input PSD. For easy visual com-
parison, output PSDs are normalized with respect to the input
PSD. The predistorter did not converge, revealing a numerical
instability problem.

5 CONCLUSION

In this paper, the benefits of using the orthogonal polyno-
mials as opposed to conventional polynomials are explored.
Closed-form expression for the orthogonal polynomial basis
is derived. We demonstrated via simulations the numerical
instability problem when high order conventional polynomi-
als are used. In terms of predistortion linearization perfor-
mance, the spectral regrowth suppression pattern exhibits
instability when a high-order, conventional polynomial pre-
distorter is used. This instability problem appears when
the matrix inverted in the LS estimator of the polynomial
coefficients, is ill-conditioned. The problem can be resolved
by using an orthogonal polynomial predistorter. Extension
to an orthogonal polynomial predistorter with memory is
also described.
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APPENDIX - INNER PRODUCT OF THE
POLYNOMIAL BASIS

Assume x is a complex-valued random variable with a
probability density function fr,θ(r, θ), where r = |x| and
θ = ∠x. Let ψk(x) and ψl(x) be functions of the random
variable x. The inner product of the two functions is defined
as:

〈ψk(x), ψl(x)〉 , Ex[ψk(x)ψ∗

l (x)]

=

∫∫

θ,r

ψk(x)ψ∗

l (x)fr,θ(r, θ) dr dθ, (14)

where [·]∗ denotes complex conjugation.
For the conventional polynomial basis, φk(x) = |x|k−1x,

the inner product of φk(x) and φl(x) is
〈φk(x), φl(x)〉 = E[|x|k+l] = E[rk+l],

which depends only on the PDF of r = |x|.
As a special case, consider the magnitude r = |x| uni-

formly distributed in [0, 1]; i.e., the PDF

fr(r) =

{

1, r ≤ 1,
0, r > 1. (15)

It follows easily that 〈φk(x), φl(x)〉 = 1
1+k+l

.
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