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Abstract— In this paper, we present a nonlinear equal-
ization scheme for Rician multipath fading channel — a
fuzzy logic-based approach. We show that each chan-
nel states of multipath Rician channel follows a Gaus-
sian distribution, which means a Bayesian equalization
can be implemented. The parameters of the Bayesian
equalization are determined using an unsupervised clus-
tering method — fuzzy c-means (FCM) method. An ex-
tremely small number of training symbols (about 1% of a
burst) are used to determine the category of each chan-
nel state with the aid of data mining. Simulation results
show that our Bayesian equalizer performs much better
than the recently proposed nearest neighbor classifier-
based equalizer at moderate to high signal-to-noise ratio
(SNR).

I. INTRODUCTION

There are two types of adaptive equalization: se-
quence estimation and symbol detection. Sequence es-
timation has very high computation complexity, be-
cause channel estimation is needed. Symbol detection
1s essentially a classification problem, in which the in-
put baseband signal is mapped onto a feature space
determined by the direct interpretation of a known
training sequence. In [9], a nearest neighbor classi-
fier equalizer is used to classify the distorted signal
for GSM communications. In [8], a systematic feature
space partitioning method is proposed to divide the en-
tire feature space into two decision regions using a set
of hyperplanes. In [6] [7], a type-2 fuzzy adaptive fil-
ter is proposed and applied to time-varying nonlinear
channel equalization using both transversal and deci-
sion feedback structures. In all these classifier-based
approach, channel estimation is unnecessary, which
tremendously simplifies this approach, but all of them
need a large number of training symbols (more than
10% of a whole burst). In this paper, we focus on
the classifier approach to adaptive equalization, and
show that each channel state of a satellite channel with
multipath follows Gaussian distribution, and apply a
Bayesian equalizer to such a fading channel, but use a
very small number of training symbols (about 1%).

In Section II, we discuss the system model we used
in this paper. In Section 111, we show why each channel
state of satellite channel with multipath follows Gaus-
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sian distribution, and apply a Bayesian equalizer to
such a fading channel. In Section IV, we evaluated our
Bayesian equalizer using simulations and compared it
against the nearest neighbor classifier equalizer by [9].
Conclusions and future research directions are given in
Section V.

II. SYSTEM MODEL

Satellite channel is often modelled as a Rician fading
channel. Rician fading occurs when there is a strong
specular (direct path or line of sight component) signal
in addition to the scatter (multipath) components. The
channel gain,

9(t) = 9r(t) + Jgo(t) (1)

can be treated as a wide-sense stationary complex
Gaussian random process, and gr(t) and gq(t) are
Gaussian random processes with non-zero means my (¢)
and mg (t), respectively; and they have same variance
0'5, then the magnitude of the received complex envelop
has a Rician distribution [10],

T z? + 52 s
palz) = ;exp{—ﬁ}%(;) x>0 (2)
where
82 = m2(t) + m} (1) (3)

and Iy(-) is the zero order modified Bessel function.
This kind of channel is known as Rician fading channel.
A Rician channel is characterized by two parameters,
Rician factor K which is the ratio of the direct path
power to that of the multipath, i.e., K = s?/2¢? [10],
and the Doppler spread (or single-sided fading band-
width) fz. We simulate the Rician fading using a di-
rect path added by a Rayleigh fading generator. The
Rayleigh fade generator is based on Jakes” model [4] in
which an ensemble of sinusoidal waveforms are added
together to simulate the coherent sum of scattered rays
with Doppler spread f; arriving from different direc-
tions to the receiver. The amplitude of the Rayleigh
fade generator is controlled by the Rician factor K.
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The number of oscillators to simulate the Rayleigh fad-
ing 1s 60.

In this paper, the system model we used in our sim-
ulations consists of random bits generator, burst (cell)
builder, modulator, up-sampler by 16, pulse shaping
filter (a square root raised cosine filter with roll off
factor 0.35), Rician frequency selective fading channel,
matched filter, down-sampler by 16, Bayesian equal-
izer, burst extractor, and bit error counter, as shown
in Fig. 1. In Fig. 2, we summarize the burst format
we used in this paper. Its length is 1013 QPSK sym-
bols long, in which 980 symbols are payload. The ran-
dom bits generator generates a binary data stream with
equally likely zeros and ones, which are for the pay-
load bits (1960 bits). The burst builder insert unique
word (UW) and guard bits, and makes a complete burst
with 2026 bits, and then the 2026 bits are modulated
to 1013 QPSK symbols. The unique word (for training
purposes) consists of 13 QPSK symbols, which only oc-
cupy 1.28% of a burst. In contrast, GSM uses 16.64%
of a burst for unique word, and 1S-54/136 uses 8.64% of
a burst for unique word [10]. In our design, one burst
takes bms, which means the symbol rate is 202.6ks/s,
and payload bits rate is 392kb/s when it’s uncoded.

III. NONLINEAR EQUALIZATION FOR RICIAN
MULTIPATH CHANNEL

A. Theoretical Basis

For the system we discussed in Section I,
the matched filter output when sampled in time-
synchronization can be modeled as

r(k) = Z_: gk, U)s(k =) + n(k) (4)

where L is the number of multipath, and
n(k) = nr(k) + jnq(k) (5)

is additive white Gaussian noise (AWGN) with mean 0
and variance ¢2 in the in-phase and quadrature compo-
nents. g(k,!) is the truncated channel gain. For QPSK
modulation, s(k) € {1,j,—1,—j} are the signal points.
Based on different values of s(k), s(k—1), - ,s(k—L+
1), there are N = 4% possible channel states. Assume
there are 2 paths (L = 2), so there are 42 = 16 channel
states. If s(k) = 1 and s(k — 1) = 1, then (4) can be

expressed as

r(k) = g(k,0) +g(k,1) 4 n(k) (6)
lgr(k,0) +gr(k, 1) + nr(k)]
iloq(k,0) +g9q(k, 1) +nq(k)]  (7)

Since ¢r(k,0), gr(k, 1), and nr(k) are Gaussian dis-
tributions with mean my(k,0), my(k, 1), and 0, and

+

with variance 0%, 02,, and o2, respectively, so rr(k) 2
g1(k,0)+g1(k, 1)+n(k) is a Gaussian distribution with
mean my (k, 0)+m;y(k, 1) and variance oy +05, 407 [1].

Similarly, rq (k) 2 ga(k,0)+gq(k, 1)+no(k) is a Gaus-
sian distribution with mean mgq(k,0) + mg(k, 1) and
variance 0'50 + 0'51 + 2.

Similarly, it’s easy to show that all the other channel
states follow Gaussian distributions. So the received
signals of one burst can be clustered to 4% clusters us-
ing FCM method introduced in [2], and the signals as-
sociated with each cluster have Gaussian distribution.
The mean (time average) and variance of each cluster
can be computed, so a Bayesian equalizer can be im-
plemented.

B. Designing the Bayesian Fqualizer

B.1 Expanding the Unique Word Based on Data Min-
ing

In this paper, we focus on a satellite channel with
2 paths. As shown in Fig. 2, there are 13 QPSK sym-
bols (unique words) for training. But there are 42 = 16
channel states for the channel with 2 paths, so it’s ob-
vious that the number of unique words (training sym-
bols) is not enough. Besides, due to the intersymbol
interference and AWGN, one channel state should have
more than one symbol for reliable category determina-
tion (which will be discussed in III-B.2). We propose
a method to expand the number of unique word based
on data mining.

Multiplying j to both sides of (4), we obtain,

jork) = ik sk -+ ion(k) (®)

L-1

S gk sk~ D] 45 n(k) (9)

=0

It’s easy to prove that j - n(k) is an AWGN with

same mean and variance as n(k), so 7;(k) = j -
r(k) is equivalent to the received signal if the in-
put is j - [s(k),s(k = 1),---,s(k = L + 1)]. Simi-
larly, we can artificially construct the received signal
r_1(k) 2 —r(k) and r_;(k) 2 —j - r(k) if the input
patterns are —1 - [s(k),s(k —1),---,s(k— L +1)] and
—j - [s(k),s(k—=1),--- s(k — L+ 1)], respectively. In
this paper, we assume there are two paths (L = 2),
and we designed the 13 unique words (in QPSK) as
UW = [1,1,=1,—j,1,1,—1,—4,1,1,—1,—j, 1]. Based
on (4), these 13 unique words can generate 12 out-
puts, r(k) (k=1,2---,12), (corresponding to 4 chan-
nel states with each repeated 3 times). Besides the 12
outputs generated from the unique words, we have arti-
ficially generated 36 virtual signals r;(k), r_1(k), and
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r_;(k), where (k = 1,2,---,12), so we totally have
12 x 4 = 48 training prototypes (corresponding to 16
channel states with each repeated 3 times).

B.2 Determine the Mean, Variance, and Cluster Cate-

gory

We use FCM method to cluster the 1013+36 = 1049
symbols (in which 1013 symbols are the input to the
equalizer, and 36 symbols are artificially-generated)
into ¢ = 16 (2 paths with QPSK modulation) clusters,
and each cluster has the mean v;, ({ = 1,2,---,16)
obtained from FCM algorithm. The FCM method also
generates U, a 16 x 1049 matrix in this application. Ev-
ery symbols r, (k=1,2,---,1049) has 16 membership
grades w;, € U (i = 1,2,---,16) and 2321 uj = 1
corresponding to the 16 clusters. Based on the 16 val-
ues of w, (i = 1,2,---,16) for each k, we can deter-
mine which cluster this symbol belongs to based on the
maximum membership in wu;; (i = 1,2, ---,16). So the
1049 symbols can be clustered to 16 cluster using this
hard decision. We compute the variance of each cluster
based on this decision. In Fig. 3, for illustration pur-
pose, we scattered one received burst (1013 symbols)
and 36 constructed symbols using dotted point, and 16
centers (corresponding to 16 channel states) using cir-
cles, when Rician fading K = 12dB, f; = 20Hz for
both paths and Fy/Ny = T7dB.

Based on the cluster to which the training symbols
(48 symbols in total) have been assigned (based on the
maximum membership), we can conclude the category
(1, j, -1, or -j according to s(k)) of each cluster. Be-
cause of the channel fading, IST, and AWGN, 3 training
patterns for each channel state may be clustered to dif-
ferent clusters, we use majority logic to determine each
cluster category. There are 4 clusters with category
“17, 4 clusters with category )7, 4 clusters with cate-
gory “-17 and 4 clusters with category “-j”.

B.3 Computation Formula

We apply Bayesian equalization to every received
symbol in one burst using the following rule: the signal

r(k)isa; (i=1,2,3,4) and a; € {1,4,—1,—j}if

p(r(k)|s(k) = ai) > p(r(k)[s(k) = @) Ya # a;

(10)

where
p(r(k)|s(k) = @) = > p(r(k)|s(k) = a;, s(k — 1) = a;)
j=1 (11)

To compute p(r(k)|s(k) = ai,s(k — 1) = a;), let r 2
[rf(k)’rQ(k)]T’
p(r(k)|s(k) = ai,s(k —1) = aj) = p(r|a;, a;)

S g e iy

where m;; 2 [mf;, mg]T and Y5 = diag{o] + 0}, 07 +
02} are the mean vector (2 x 1) and covariance matrix
(2 x 2) of [rr(k), rq(k)]T obtained via FCM clustering.

IV. SIMULATIONS

We compared our Bayesian equalizer with a nearest
neighbor classifier (NNC) equalizer [9] for equalization
of mobile satellite channel with 2 paths. The nearest-
neighbor (NN) rule, and its extension, the K-NN al-
gorithm [3] (if the number of training prototypes is N,
then K = /N is the optimal choice for K), are non-
parameteric classification algorithms, that have been
extensively applied to many pattern recognition prob-
lems. Recently, Savazzi, et al. [9] applied a NNC which
used the K-NN algorithm to channel equalization for
mobile radio communications and achieved good per-
formance. In our example, we totally have N = 48
training symbols (12 symbols are from the provided
unique words and 36 symbols are expanded using data
mining), which means K = V48 ~ 7. The NNC equal-
izer classify the category of (k) based on the categories
of its 7 nearest neighbors from the 48 training symbols.

We studied two Rician fading channels: one with
Rician factor K = 12dB, doppler shift f; = 20H z; and
the other one with Rician factor K = 9dB, doppler
shift f; = 10Hz. For both channels, the symbol rate
is 202.6ks/s, i.e., the information (payload) bit rate is
392kb/s.

For each channel, we ran our simulations for different
Ey/ Ny values. At each Ep,/Ny value, we ran the simula-
tions for 5000 bursts, and obtained the average bit error
rate (BER) for the FCM-based Bayesian equalizer and
NNC-based equalizer. The performances of the two
equalizers in both channels are plotted in Figs. 4 and
5. Observe that our Bayesian equalizer performs much
better than the NNC equalizer at moderate to high
SNR (FEp/Ng > 7dB) in both channels. At low SNR
(Ep/Ny < 7dB), NNC equalizer performs better than
the Bayesian equalizer, because we only have 13 sym-
bols unique words, and each channel state only has 3
training symbols after we expanded the unique words,
and the training symbols could be clustered to a wrong
cluster at low SNR.

V. CONCLUSIONS

We have proposed a nonlinear equalization scheme
for Rician multipath fading channel — a fuzzy logic-
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based approach. We show that each channel state of
multipath satellite channel follows a Gaussian distribu-
tion, which means a Bayesian equalizer can be imple-
mented. The parameters of the Bayesian equalizer are
determined using an unsupervised clustering method
— fuzzy c-means (FCM) method. An extremely small
number of training symbols (about 1% of a burst) are
used to determine the category of each channel state
with the aid of data mining. Simulation results show
that our Bayesian equalizer performs much better than
the recently proposed nearest classifier-based equalizer
at moderate to high SNR.
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Fig. 1. System model we used in our simulation.

G Payload uw Payload G
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Fig. 2. Burst format we used in this paper.

Fig. 3. The centers of 16 channel states (denoted by circles) ob-
tained via FCM clustering when E,/Ng = 7dB, K = 12dB,
and fgq = 20H z.

Average BER

——  NNC Equalizer
—s—  Bayesian Equalizer

8 9
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Fig. 4. The performances of nearest neighbor classifier (NNC)
equalizer and our Bayesian equalizer for satellite channel with
2 paths and Rician factor K = 12dB and f4 = 20H 2.
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Fig. 5. The performances of nearest neighbor classifier (NNC)
equalizer and our Bayesian equalizer for satellite channel with
2 paths and Rician factor K = 9dB and f4 = 10H 2.
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