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ABSTRACT
Although the topic of analog-to-digital (A/D) conversion should
fundamentally be part of the signal processing area, paradoxically,
very little signal theory has been devoted to it. One reason is that
the main technique currently used in data acquisition, called ��
modulation, consists of coarse quantization with feedback. This
prevents the normal resolution of the output of the system in terms
of its input, contrary to the case of linear feedback systems. This
paper introduces new tools to solve this problem and enable rigor-
ous signal error analysis of �� modulators.

1. INTRODUCTION

The area of analog-to-digital (A/D) conversion has experienced
tremendous progress since the introduction of oversampled quan-
tization with feedback, known under the name of �� modulation
[1] (see Figure 1(a)). The principle of the method is to achieve
high resolutions of conversion by oversampling the input, rather
than by increasing the resolution of the quantizer. The role of the
feedback is to reduce the inband portion of the quantization error
signal by taking advantage of the input redundancy. In spite of the
simplicity and efficiency of this technique however, �� modula-
tion has introduced a new system that is not accessible to standard
signal processing analysis. This is because, contrary to linear sys-
tems, there does not exist a general technique to solve the output
of a nonlinear feedback system in terms of its input. As a result,
little rigorous signal theory has been available on �� modula-
tion. In particular, the theoretical question of how fast the inband
error decays with the oversampling has been not been rigorously
solved yet in the general case. When the two-input linear part of a
�� modulator (see Figure 1(a)) is characterized by the two trans-
fer functions ���� and ���� as shown in Figure 1(b) and that
���� � ��������� with

���� � � � ���
�� �����

�� and ���� � ��� ������ (1)

it is commonly believed that the inband mean squared error (MSE)
of the system decays with the oversampling ratio � in 	������ .
It was found in [2] that this results only holds in the ideal case
where ���� � � and the quantizer is uniform and never over-
loaded. In this paper, we call this configuration of modulation the
ideal �� modulators. In the general case, it was numerically ob-
served that the asymptotic error decay is in 
���� instead. This
is illustrated by the numerical results of Figure 2(a).

The only rigorous error analysis that exists until now applies
to the ideal �� modulators [3, 4]. As a matter of fact, this analysis
was possible because the ideal�� configuration was indeed found
to yield an explicit output expression in terms of the input. This ex-
plicit expression is represented through the feedforward block di-
agram of Figure 3(b), which can be seen as a generalization of the
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Fig. 1. General block diagrams of �� modulators: (a) original
diagram; (b) equivalent diagram.

block diagram of uniform quantization (see Figure 3(a)). The non-
linear part of this diagram is all reduced to the function ����� �

�
� �
�
�

which we define to be the 1-periodic function that is invariant in
�� �

�
� �
�
�.

In this paper, we show that, in the case of constant inputs, all
modulators characterized by (1) yield an equivalent feedforward
diagram of the type of Figure 3(c). The only conditions required
here are the stability of the modulators and the uniformity of the
quantization levels. This implies in particular that the quantizer
can be overloaded, have non-uniform quantization thresholds and
���� can be any polynomial or degree less or equal to 
. We then
show how the MSE behavior of 
���� versus 	������ can be
explained with time-varying inputs, thanks to the equivalent block
diagram for constant inputs.

2. THE TILING PROPERTY WITH CONSTANT INPUTS

The key to this research has been the recent observation of a re-
markable property of �� modulators with constant inputs. We
consider the general class of modulators mentioned in the intro-
duction. Without loss of generality, we will however set ���� to
1. Mathematically, we simply assume that the quantizer function
� maps � into discrete values of � that lie on a uniform grid of
period 1. Let ���	 be equal to a constant � and ���	 be the 
th
order integration of the output-input difference ���	 � ���	 of the
modulator. Formally, we have in the �-domain

�������� � ���������� (2)

In the case 
 � 
, we plot by black dots in Figure 4 the position
of a large number of consecutive state vectors

���	 � ����	 ��� � �	 � � � ��� � 
 � �		 � �� � (3)
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Fig. 2. Numerical experiments: (a) MSE results of second order (
 � 
) �� modulators with ���� � � and ��

��
as 0dB reference (where

� is the quantization step size); (b) Centroid function ���� numerically obtained on various second order �� modulators; (c) MSE results
of the sequences �

��
��	, ����	 and ����	 with the single-bit second order (
 � 
) �� modulator with ���� � � and time-varying inputs.
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Fig. 3. Equivalent block diagrams to quantization systems: (a) infi-
nite mid-riser uniform scalar quantizer of step size 1; (b) ideal 
th
order �� modulator; (c) non-ideal 
th order �� modulator with a
constant input ���	 � �.
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Fig. 4. Representation in black of 4,000 consecutive state points ���	 of various second order �� modulators with constant inputs ���	:
(a) ���	 � �� �

�

���; (b) ���	 � �� �

�

��; (ii) multi-bit configuration with ���� � � and a deviation of the 0-threshold by ��
;

(iii) multi-bit configuration with ���� � � � ��
���; (iv) single-bit configuration with ���� � �. The points in gray are the translated
versions of the state vector points by �� �	 and �� �	, respectively.
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The figure includes three different modulators and two choices of
value for �. The state points ���	 appear to remain in some deter-
ministic set that we call ��. The definition of this set depends on
both the choice of modulator and the value of �. The remarkable
phenomenon that can be observed about �� is that it also appears
to tile the space with its integer shifts in every dimension of �� .
We say in this paper that �� is a tiling set. We highlight this prop-
erty in Figure 4 by representing in gray the shifted versions of the
state points by �� �	 and �� �	 respectively. This phenomenon was
first observed in [5, 6] with stable one-bit modulators and later ex-
perimentally confirmed on multi-bit configurations in [2].

Until now, there does not exist a full mathematical proof of
this property. However, the characteristics of �� modulators that
are responsible for it can be identified. For convenience, we will
use the matrix notation

������
��

�
Æ��� �	

�
������
������

By following the node signal notation of Figure 1(b) and assuming
���� � �, we have in the �-domain

� ��� � ���� � ������ ������ and ���� � � ��� ������
(4)

By eliminating ���� and ���� between the three equations of (2)
and (4), we obtain

� ��� � ����� ������ ����������������

� ����� ���������������� (5)

By expressing (2) and (5) in the time domain, we obtain respec-
tively�

���	 � ���

��� �� � ��� � �	 � ����	� ���	�
���	 � ���	���

������ � ������ � �	
(6)

where �� are the integer coefficients of the expansion ���� �
�� � ����� �

��

��� ���
��. With a matrix notation version of

(6), we obtain the following dynamical system description of the
�� modulator:��

�
���	 � ��� � �	 � � � ����	� ���	� � �����
���	 � �����	��
���	 � ���	���� � �	 � ���

(7)

where � ��
�
��� ������

�
� � �� ��� � � � ��	 (8)

and � �� �������� � � � �������	. By eliminating ���	 and ���	
in (7), we obtain

���	 � ���� �	 ���
	
���	������	���� � �	 � ���



� �����

(9)
When ���	 � �, this implies that ���	 � ������ � �	� where

����� �� � � � �
	
������� � ���



� ����� (10)

The set �� observed in the experiments of Figure 4 must then be
an invariant set of ��, i.e., a set such that ������ � ��. The
question is to know what characteristics of �� are responsible for
making this invariant set a tiling set. We have the following prop-
erty.

Theorem 2.1 Consider any mapping �� of the type of (10) where
� is a matrix with integer coefficients and a determinant equal
to �� and where � has output values on a uniform grid of � of
period 1. Then �� transforms any tiling set of �� into a tiling set
of �� .

This is proved in [7]. Because the polynomial ���� � �� �
����� has by necessity integer coefficients with the constraint
�� � �����, one can easily verify that the matrix � resulting from
(8) satisfies the conditions of the theorem. This theorem does not
prove that the existence of an invariant set that is a tiling set, but
it leads to the following intuition. Consider any arbitrary tiling set
�� (for example, a unit hypercube of ��). We know from the theo-
rem that the set �� �� ��

����� must be a tiling set for all � � �. If
�� “converges” to a set �� when � goes to ��, then �� will also
be a tiling set that satisfies the invariance relation �� � ������
as the limit of the recursive relation �� � ��������. However,
this idea is only intuitive. A formalization of this idea is in fact
a difficult problem. Some further mathematical constructions for
the proof of existence of a tiling invariant set have been proposed
in [7].

3. BREAKING THE FEEDBACK LOOP

Based on the fact that ���	 remains in a tiling set �� when ���	 �
�, we show in this section that the �� modulator yields the equiv-
alent feedforward diagram of Figure 3(c). We explicitly assume
here that the output values of the quantizer function � are of the
form �� �

�
where � � � (mid-riser quantization). If we denote by

�������	 the causal inverse �-transform of ������, then we have
in the time domain

���	 � �������	 � ����	� ���	�� (11)

Note that the sequence �������	 only contains integer values. As a
result,

���	 �� �������	 � ����	 � �
�
� (12)

is a sequence that contains only integer values, since ���	 � �
�

is
always an integer. Now, one can always decompose ���	 as

���	 �  ��	� ���	 (13)

with  ��	 �� �������	 � ����	 � �
�
� (14)

Similarly to (3), let us define
���	 �� � ��	  �� � �	 � � �  �� �!� �		 � (15)

���	 �� ����	 ��� � �	 � � � ��� �!� �		 � (16)

where  ��	 and ���	 were defined in (14) and (12) respectively. Be-
cause of (13), we obviously have ���	 � ���	����	. Now, since
���	 is always an integer, then ���	 � ��. Since ��is a tiling set,
there exists a unique function ���	� of �� that is invariant in ��
and is 1-periodic in each dimension. With the fact that ���	 � ��,
this implies that

���	 � !��	�����	�

� !��	�����	�� (17)

One then obtains the diagram of Figure 3(c) by implementing (14),
(15), (17) and the relation ���	 � ���	 � ���	 � ���	 that results
from (2).

4. ERGODICITY AND CONSEQUENCES

With the equivalent feedforward diagram of Figure 3(c), all the dif-
ficulty of analysis finds itself concentrated in the nonlinear func-
tion ���	� . Not only can this mapping be of extreme complex-
ity, but we do not currently have tools to systematically derive
the set ��. However, some new global properties can still be ex-
tracted. It is easy to see from the diagram that the sequence  ��	
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is basically a polynomial in � with leading coefficient equal to
�
�

�� � �

�
�. If we assume for a moment that �� is a unit hyper-

cube of �� , it is know from the ergodic theory that the sequence
of points ���	 � ���	�����	� will have a uniform density in ��
when � is irrational [8]. As shown in [7], this property remains
valid when �� is more generally a measurable tiling set. Since
���	 � ���	 � �����, the uniform density of ���	 in �� implies that

���
����

�

�

��
	��

���	 � ���� (18)

where ���� ��
�
	�

� � �������. A qualitative interpretation of
(18) is that ���	 has a DC component equal to ����. Note that, al-
though (18) is only guaranteed for � irrational, the function ����
is defined for all � as long as the condition that �� is a measurable
set is realized. While ���� cannot be analytically derived, since
we currently do not have general tools to derive ��, it is still pos-
sible to evaluate it numerically thanks to (18) at least on irrational
values of �. We plot some numerical results in Figure 2(b). One
can see that in the cases (ii-iii-iv) of Figure 2(b), ���� is a non-
constant function of �. This is consistent with our observation of
the dependence of �� with � in Figure 4. Note however that ����
is constant in the case (i) corresponding to an ideal �� modulator.
This is because the equivalent diagram of an ideal modulator of
Figure 3(b) implies that of Figure 3(c) with �� � �� �

�
� �
�
�� which

is independent of �. We believe that this independence only occurs
with ideal modulators.

5. ERROR ANALYSIS

In this section, we qualitatively explain how the equivalent feed-
forward diagram of a �� modulator with constant inputs can be
used to clarify its asymptotic MSE behavior with time-varying in-
puts with regard to the oversampling � . Details on the rigorous
justification of the arguments that follow can be found in [5, 9].
The performance of a �� modulator is measured by evaluating
the inband error remaining in the quantized signal ���	. More pre-
cisely, if ���	 is the sampled version of a bandlimited signal ��"�
at " � � 


�
and #�"� is the ideal lowpass filter1 that preserves ��"�,

the inband signal error is equal to �
��

��	 �� #� ��	 � ���	 � ���	
where #� ��	 is the sampled version of a bandlimited signal #�"�
at " � � 


�
. Using the relation (2), we have

�
��

��	 � #� ��	 � ����	� ���	� � �$� ��	 � ���	 (19)

where $� ��	 �� #� ��	 � ���	. In the general context of a time-
varying oversampled signal ���	, we have this intuitive idea that
���	 is a slowly varying signal with � at high oversampling. With
our knowledge of the constant input case, we qualitatively expect
���	 to “locally” have a DC component equal to �����	�. Let us
decompose ���	 � �����	��%��	 where %��	 � ���	������	�
is qualitatively the “AC” component of ���	. Then (19) yields the
decomposition �

��
��	 � ����	 � ����	 where

����	 � �$� ��	 ������	� and ����	 � �$� ��	 �%��	� (20)

Because $� ��	 is nothing but the 
th order differentiation of #� ��	,
it can be shown at high oversampling that $� ��	 is asymptotically
equivalent to the sampled version of � 


�
��# ����"� at " � � 


�
,

where # ����"� designates the 
th derivative of #�"�. With some

1For rigorous convergence of the derivations, it is however necessary to
assume that the lowpass filter has at least some � transition width [5].

assumptions on the variations of the function ���� with � [9], it
can be shown that asymptotically high oversampling �

����	 � �

��
����



�
�

where ���"� �� �&�# ����"� � ����"�� and � designates here the
continuous-time convolution, unless ���"� is itself a zero signal.
As ���"� is a fixed and deterministic signal that does not depend on
� , this qualitatively shows that the MSE of ����	 decays with �
in 
����. Based on the numerical extraction of ���� from Fig-
ure 3(b), the numerical evaluation of ����	 plotted in Figure 3(c)
confirms this result on a one-bit second order modulator, while it
points out the MSE behavior of ����	 in 	������ . This implies
that the asymptotic MSE behavior of �

��
��	 must be in 
����.

Now, this result is conditioned on the assumption that ���"� is a
non-zero signal. With ideal modulators, we saw that ���� is a
constant function of �. In this case, ����	 is identically zero be-
cause $� ��	 cancels constant inputs. This explains why the global
MSE decay rate is exceptionally in 	������ with ideal modula-
tors.
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