COMPUTING THE RECURSIVE POSTERIOR CRAMER-RAO BOUND FOR A
NONLINEAR NONSTATIONARY SYSTEM

Robert M. Taylor Jr., Brian P. Flanagan, and John A. Uber

The MITRE Corporation 7525 Colshire Drive McLean, VA 22102
{rtaylor, bflan, johnuber} @mitre.org

ABSTRACT

The recursive Posterior Cramer-Rao Bound (PCRB) has re-

cently been shown to be the information-theoretic mean square

error (MSE) bound for an unbiased sequential Bayesian es-
timator. The expectation integrals for the Fisher informa-
tion components, which arise out of the recursive PCRB
formulation, are intractable in general and must be approxi-
mated numerically. We introduce a sequential Monte Carlo
method for computing the PCRB in a nonlinear nonstation-
ary dynamic system. To validate the bound accuracy, we
run a particle filter on a nonstationary logistic function and
see how the MSE compares to the PCRB.

1. INTRODUCTION

The goal of this work is to derive a precise algorithm for
computing the mean square error (MSE) bound on an op-
timal Bayesian tracker for a general system. We focus at-
tention on the nonlinear, non-stationary system model and
restrict attention to the Gaussian case only for simulation
convenience. Van Trees [7] introduced the batch form of a
posterior Cramer-Rao bound (PCRB) for random parameter
vectors, but his formulation does not allow for a recursive
implementation and suffers from computational complexity
as the state vector grows linearly with time. The recursive
PCRB derived in [6] gives us a formula for updating the
posterior Fisher information matrix (FIM) from one time
instance to the next while keeping the FIM constant in size.
An alternative formulation of the recursive PCRB was done
by Bergman [1], where his recursion required modifying
the measurement function to be bijective. Zhang and Willet
[8] extend the work of [6] to derive a PCRB expression for
estimating a state with unknown measurement origin. Hue
etal. [3] extend the PCRB formulation to include data asso-
ciation for multiple target tracking. None of these discusses
how to accurately compute the expectation integrals in the
recursive PCRB formulation for the general nonlinear, non-
stationary, and non-Gaussian system model. In this study,
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we show how sequential Monte Carlo methods can be ap-
plied to estimate the FIM components in the PCRB equation
for the general case. We apply our algorithm to a nonsta-
tionary logistic function as an example. In [5] we apply a
special case of the algorithm to single-target sensor-sensor
radar tracking.

The rest of the paper is organized as follows. We de-
scribe the PCRB for sequential Bayesian estimation in sec-
tion 2 and derive methods for computing the PCRB in sec-
tion 3. We show simulation results in section 5 and summa-
rize results in section 6.

2. POSTERIOR CRAMER-RAO BOUND FOR
SEQUENTIAL BAYESIAN ESTIMATION

The general form for the process and observation models
with additive noise statistics can be written as

Xp1 = fu (X)) + Wi )
zr = hy(xp) + Vi

where x;, is the state vector at time k we wish to estimate, £,
is the process model mapping the state at the current time &
to the next time k + 1, z;, is the measurement vector at time
k, and hy, is the observation model mapping the current state
vector to the observed measurement. The process noise and
measurement noise are modeled by the random vectors wy,
and vj, which can assume any distribution in principle but
are generally Gaussian. The first equation gives the nec-
essary information for the process model density function
p(xk+1|Xk), and the second equation provides the observa-
tion model density function p(zy|xy.).

We desire a lower bound on the covariance of a tracker
defined by (1). The trackers are state estimators %;, for the
true target state x;. Since we are interested in the class
of trackers that are unbiased, bounding the MSE can be
achieved by the PCRB alone. Assuming regularity holds
for the probability density functions, the estimator covari-
ance is:

Py = E{[& — xg][&e —xx]"} > J; ! )

ICASSP 2003




in which Jj, is the posterior FIM defined as
I, = B{=Vx, Vx, log p(xy, )} ®)

Tichavsky et al. [6] show that from the previous Fischer
information J;, we have:

Jerr = Di? = Dit (i + D) 7' D )

where
D/lc1 = Ep(xxcﬂ\z;cﬂ){_vm vzgk log p(xk+1lxx)} ()

i = Epg)f’ﬁllmﬂ){_v"kvzkﬂ log p(xk-+1[xk)}
=[Di’] (6)

D}%z = Ep(xk“\zk+1){_v"ikp+1v£k+1 log p(xp+1|xk)}
+Ep(xk+1|Zk+1){_vXk+1vxk+1 Ing(Zk+1|Xk+1)}
(7)

and we initialize the recursion of (4) with:

Jo = E{—Vx,Vy, log p(x0)}. (8)

3. COMPUTING THE RECURSIVE PCRB

In general, the expectations in (5)-(7) have no closed-form
analytical solution and must be approximated. If we do not
attempt to linearize the system model, but instead keep the
nonlinear equations as they are, then we can solve for the ex-
pectation integrals using Monte Carlo integration. If either
the process model or observation model is already linear,
then some of the terms in (5)-(7) will simply be products of
matrices. As a first step in applying Monte Carlo integra-
tion, we will need to define the following matrix functions:

—Vx. VL, log p(Xpi1|xz)
—Vx, ka+1 log p(Xp41|X1)
vXk+1vxk 1 logp(xk+1|xk)
ka+1vxk+1 log p(Zg41 [Xpt1)-
©)

We can now write equations (5)-(7) using the following:

A (xp, Xpg1) =
A12(Xk’ Xk+1) —
A2 (Xp, Xpy1) =
A227b(X1c+1 yZhi1) =

Di' = [ A (X, Xpy1)p(Xk4 1124,y ) dXpg1
D? = fAlz(xkaXk+1)p(xk+1|zk+1)dxk+1
Di? = [ (A% (xp, Xp41) + A2 (Xpt1, 2h41)) X
P(Xkt1 |2y )dXpp1 -
(10)
These expectation integrals can be evaluated with a sample
mean approximation once we have a sample representation
of the posterior density. We can obtain this sample-based
representation of the posterior pdf p(xy.t1|zr+1) by bor-
rowing on the work done in particle filtering (see [2]). Fig.
1, adapted from Isard and Blake [4], gives an illustration
of how the samples in a sequential Monte Carlo process
are used to represent the various density functions neces-
sary for Bayesian tracking. The a posteriori samples at time
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Fig. 1. Illugtration of how the samples in a sequentia Monte Carlo
method are used to represent the various density functions necessary for
Bayesian tracking. Figure is adapted from Isard and Blake [4].

k — 1 denoted as s;”jl with weight w,(c’i)l are passed through
the process model to experience drift and diffusion. The
output samples of the process model are then fed into the
measurement model to assign new weights to the samples.
The weighted samples are then used in the sequential im-
portance resampling (SIR) step to produce the a posteriori
samples at time k. Therefore, using the process model den-
sity p(xg+1|xx) and likelihood density p(zj1|xj+1) We
can generate weighted samples on a stochastic grid to rep-
resent the posterior density and estimate the Fisher compo-
nent matrices with the empirical averages

N
D= 4 5% A (el
n]\il
D = 3= 50 A2(s)" i)
n]\il
Di? ~ NL S (A22,a(sgcn),sgcrjr)l) +A22’b(55£31,zk+1))

n=1

(11)
where s;’fl Vn = 1,..., N, are the a posteriori samples
representing the density p(x+1|zx+1) and Ny is the num-
ber of samples. From the Strong Law of Large Numbers we
know that the empirical averages converge almost surely to
the expectations in (5)-(7). We will designate the algorithm
for computing the PCRB via sequential Monte Carlo inte-
gration to be PCRB-SMC and summarize it here.

PCRB-SMC

1. Initialize samples sg”) Vn = 1,..., N, from p(xo),
compute .J from (8), set 7" = o M =l
7{", and set k = 0.

2. Predictby samplingvn =1, ...,

xRUTH (n)
X, ) to choose s/,

N from p(xp41 |xk =
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3. Weight samples from measurement z; 1.
w,(c’fl = p(Zps1|Xpg1 = 5’54721) and then normalize
sothat )", 7Tkj—1 = 1 and store cumulative probabili-
ties so that we propagate the triplet (s/kj1 ) w,(H)l, cfc’fl)
wherecill =0; cgcr_fl = C§g+1 )—+-7r,(;j_)1(n =1,..,N).

4. For each of Ny samples select sfﬁl as follows:
1) Generate uniformr.v. r € [0, 1].
2) Find smallest / for which ¢{') | > r
3) Sets\”, = s},

5. Compute A“(sﬁc"), (:’31), A”(sﬁc"), 55;}31)
A22a(si™ s, and A2 (s$™), L zp40)
Vn =1,..., Ns from (9).

6. Estimate D;', D;?, and D3 from (11) and set D}' =
DL,
7. Compute Jy+1 = D3 — D3'(Jj, + D)~ D}?

8. Setk = k+1,save thesamplesets\™ 7{" \™ {n =
1,..., N}, and go to step 2.

4. VALIDATING THE PCRB

One way to verify the accuracy of the PCRB is by compar-
ing the MSE of various Bayesian trackers to the bound. The
MSE matrix of an optimal Bayesian tracker should exactly
match the inverse FIM matrix at each time instance. The
particle filter (PF) is one type of suboptimal Bayesian es-
timator that performs well in nonlinear, nonstationary, and
non-Gaussian systems. It also has conditions under which
it converges to the optimal Bayesian tracker. There have
been many variations and improvements on this fundamen-
tal approach including auxiliary particle filters, regularized
particle filters, and Rao-Blackwellized particle filters. (See
[2] for a thorough introduction to the theory and applica-
tion of SMC methods.) For the purposes at hand, a basic PF
will provide a sufficient baseline for comparison of MSE
to the PCRB. Here, we simply provide the PF algorithm as
given in [4]. Note that the PF algorithm is identical to the
PCRB-SMC algorithm of section 3 in the resampling and
weighting stages (steps 2 and 4 respectively).
PF (Isard and Blake[4])

1. Initialize samples s vn = 1, ...
setnl™ = &, () =

, N from p(xo),
= 4 7l and set k= 1.

2. Fromthe previoussampleset s, 7™ ¢\ {n =
1,..,N}attimestepk — 1

3. Select a sample s/;"jl as follows for each of V new
samples:
1) Generate uniform r.v. 7 € [0, 1].
2) Find smallest / for which ¢}, _, > r

3) Set s/in) = sgclzl

4. Choose s\ by sampling from p(x |x;_1 = s/\™)

5. Measure and weight new positions in terms of mea-
sured features zj. w,ﬁ") = p(zilxp = s§cn>) and
then normalize so that 3, w,(c") = 1 and store cumu-
lative probabilities so that we propagate the triplet
(sgcn),ﬂ,(cn),cscn)) where C;CO) = O;cgcn) = cgcn Doy
ﬂ,(cn)(n =1,..,N).

6. Compute state estimate at time £ as:
E ﬂ.k S(n)

7. Setk =k + 1 and go to step 2.

)A(k = E[Xk]

5. SSIMULATION RESULTS

For the purpose of verifying the results by simulation we
will examine the scalar nonstationary logistic function

Tp+1 = azp(l — xp) + B cosk + wy,

12
zkzya:z+vk ( )

where we choose o = 4, 8 = .0001, and v = 10 such that
the evolution of this chaotic system produces states that are
roughly distributed according to the arcsine distribution. To
simplify calculations we let the noise statistics be Gaussian.
We set wy, ~ N (0,02, ) and v, ~ N (0,02, ) with o, =
.01 and 0,, = 1. Fig. 2 compares the true state to the
estimated state coming from the particle filter of section 4.
The system is sufficiently nonlinear to cause the extended
Kalman filter (not shown) to fail. The particle filter does
not diverge but maintains an unbiased estimate.

We can now apply the PCRB-SMC algorithm described
in section 3 to bound the MSE of the particle filter. The
terms from (9) are easily computed as:

AN (xp, Xp1) = = [2axp41 + 02 — 602z, +

6a’xi — 2a[3 cos k|
A2 (g, Xp41) = z—[—a + 2axy]
. w

A22’a(Xk,Xk+1) = a

A2 (xp 1, 2040) = é[12’72k+1mk+1 + 3075 4]
(13)
Fig. 3 shows the MSE of the particle filter run over 100 ex-
periments compared with the PCRB. We estimate the terms
in (11) using Ny = 500 samples. We see that the bound

generally is lower or matches the MSE for most points in
time.
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6. CONCLUSION

The PCRB accurately bounds the mean square error for un-
biased sequential Bayesian estimators as shown theoreti-
cally and demonstrated against a nonlinear MMSE estimator—
namely a particle filter. Since the PCRB can only be ap-
proximated due to the intractable expectation integrals, we
derived a method for approximating the PCRB. The method
uses sequential Monte Carlo integration and converges al-
most surely to the PCRB. The formulation of the bound is
general enough to account for any arbitrary system model.
We designed a nonstationary logistic function to test our re-
sults. We ran the PCRB computation algorithm and the par-
ticle filter on the same system model and showed that the
PCRB does indeed bound the MSE of a nonlinear nonsta-
tionary Bayesian estimator.
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