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ABSTRACT

This paper suggests a new approach to the problem of harmonic
signal estimation. The idea is to model the harmonic signal as a
function of the state of a second order nonlinear ordinary
differential equation (ODE). The function of the right hand side
of the nonlinear ODE is parameterized with a polynomial model.
A Kalman filter and an extended Kalman filter are then
developed. The proposed methodology reduces the number of
estimated unknowns in cases where the actual signal generation
resembles that of the imposed model. This is expected to result
in an improved accuracy of the estimated parameters, as
compared to existing methods.

1.  INTRODUCTION

The modeling of signals with harmonic spectra has widespread
applications. Examples include vibration analysis and overtone
analysis in power networks. The measurement of linearity of
electronic power amplifiers and other devices using sinusoidal
inputs is another very important field of application.
 One of the most widespread signal processing methods
ever, the periodogram method in combination with fast Fourier
transform (FFT) techniques, forms a baseline against which
harmonic signal analysis methods can be compared. See  [ 1 ]
for detailed algorithms and performance analysis issues.
Parametric methods for line spectra are directly applicable to the
harmonic signal estimation problem. The references  [ 1 ]-[ 3 ]
discuss a number of such methods. Many theoretical results on
expected performance are available in [ 1 ]-[ 4 ].

The present paper is inspired by a possible model for
the generation of  periodic signals, namely nonlinear ordinary
differential equations (ODEs). There is a rich theory on the
subject as outlined in e.g. [ 5 ]. Some of the strongest results of
the theory concern ODEs with two state variables. There are
several powerful theorems on the existence of periodic solutions

to ODEs in R2  - hence it seems to be advantageous to base
estimation algorithms on second order ODEs.

The signal model used in the paper is obtained by
introducing a polynomial parameterization of the right hand side
of a general second order ODE, and by defining the harmonic
signal to be modeled as a function of the states of this ODE. A
Kalman filter algorithm [ 6 ] and  a nonlinear approach using the
extended Kalman filter [ 6 ] are then described. Constraints are
imposed on the model structure to reduce the number of
parameters. It is shown that these constraints are valid for a very

general class of second order differential equations. Furthermore,
as compared to [ 7 ], the algorithms of the present paper are
recursive and less sensitive to noise.

What are the advantages offered by the approach
taken? First, many systems that generate harmonic signals are
best described by nonlinear ODEs. Examples include tunnel
diodes, pendulums, biological predator-prey systems and radio
frequency synthesizers, see  [ 5 ]. Many of these systems are
described by second order ODEs with polynomial right hand
sides, and it can be expected that there are then good
opportunities to obtain highly accurate models by estimating
only a few parameters. This implies that the achievable accuracy
would be improved, as compared to methods that do not impose
the same amount of prior information.

The paper is organized as follows. Section 2 introduces
the details on the model, including a definition of the
parameterization. Section 3 discusses algorithms, while section 4
presents a simulations. Conclusions appear in section 5.

2. THE ODE MODEL AND ITS PARAMETERIZATION

2.1. Measurements and modeled signals

The starting point is the discrete time measured signal

( ) ( ) ( )z t y t e t= + . ( 1 )

Here ( )y t is the continuous time signal to be modeled and

( )e t is the discrete time measurement.  The condition

C1) ( ) ( )y t T y t+ = , ∀ ∈t R , 0 < < ∞T ,

means that ( )y t is assumed to be periodic. Furthermore, ( )e t is
assumed to be zero mean Gaussian white noise, i.e.

C2) ( ) ( )e t N∈ 0 2,σ , ( ) ( )[ ]E e t e t kTs k+ = δ σ,0
2 .

TS  denotes the sampling period.

2.2. Model structure and parameterization

The main idea of the paper is to model the generation of the

signal ( )y t  by means of an ordinary differential equation of
order two. A general model structure of this kind  is
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In ( 2 ) and ( 3 ) ( ) ( )( )x t x t
T

1 2 is the state vector, ( )c c1 2

is the vector with the selected output weighting factors and

( )θ θ θ= 1 2
T T T

( 4 )

is the unknown parameter vector. Note that ( 2 ) is given in
continuous time, while ( 3 ) is a discrete time equation.

Additional structure will now be imposed on the model
by choosing the state variables and the output relation  as

x
x

y
dy dt
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( ) ( )c c1 2 1 0= , ( 6 )

referring to the underlying second order ODE

d y

dt
f y

dy
dt

2

2 2 2= 



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, ,θ ( 7 )

Note that all systems where the measured quantity can be
modeled as ( 7 ) can be written as ( 5 ) and ( 6 ). This has the
advantage of reducing the number of parameters since

dx dt x1 2=  and only ( ) ( )( )f x t x t2 1 2 2, ,θ of ( 2 ) needs to be
parameterized. Most often conventional physical modeling
results in ODEs where the measured quantity is the dependent
variable, a fact that motivates the selection. Hence, the
constrained structure is believed to be a quite general one.

As stated in the introduction, the parameterization that
is used in this paper is chosen to be polynomial. Together with
( 5 ) - ( 7 ), this choice gives

( ) ( )( )f x t x t1 1 2 1, ,θ = ( )x t2

( ) ( )( )f x t x t2 1 2 2, ,θ = ( ) ( )θ2
00

1 2

22

, ,l m
m

M

l

L
l mx t x t

==
∑∑ . ( 8 )

2.3. Discretization

In order to formulate complete discrete time models, the

continuous time ODE model ( 2 ) needs to be discretized in time.
This is done by exploiting an Euler forward numerical
integration scheme. For simplicity, the discretization interval is
selected to be equal to the sampling period TS . The result is

( ) ( ) ( )x t T x t T x tS S1 1 2+ = +

( ) ( ) ( ) ( )x t T x t T x t x tS S l m
l m

m

M

l

L

2 2 2 1 2
00

22

+ = +
==

∑∑ θ , , . ( 9 )

The model ( 9 ) can be compactly written as

( ) ( ) ( )x t T x t T x tS S1 1 2+ − =

( ) ( ) ( ) ( )( )x t T x t x t x tS
T

2 2 2 1 2 2+ − = ϕ θ,
( 10 )

( ) ( )( )1
2 1 2T

x t x t
S

ϕ , =

( ) ( ) ( ) ( )( )TMLLM txtxtxtx 2222
2112 .........1 ( 11 )

θ2 =

( )T
MLLM 2222 ,,20,,2,0,20,0,2 ......... θθθθ .

( 12 )

3.  ALGORITHMS

3.1.  The Kalman Filter

The Kalman filter is obtained by  introduction of the parameters
as states, using a random walk assumption. Other alternatives
than a random walk assumption are possible. However the
choice used here is standard in the literature. Note that the

construction of the regression vector ( ) ( )( )ϕ 2 1 2x t x t, of ( 11 )
is based on the exact states - a requirement that cannot be met.
Two ideas to resolve this problem are presented in this paper.

The idea of the Kalman filter algorithm is to replace
the first state appearing in the regression vector by the measured
output signal, a choice that follows from the definition of the
output vector in ( 6 ). Because of the selected structure, the
second state is replaced by an estimate of the derivative of the
measured output signal. This latter signal, denoted

( )( )dz t dt
est

, is obtained from a differentiating filter.

The state vector of the Kalman filter is now augmented
with the estimated parameter vector as follows

( ) ( ) ( ) ( )( )x t x t x t tT T
= 1 2 2θ ( 13 )

Together with ( 6 ), ( 9 ) - ( 12 ), this results in
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( )H 0= 1 0 T . ( 16 )

In order to complete the Kalman filter description,
noise properties and initial values need to be set. The
measurement noise properties follow from C2). Because of the

nonlinear data dependence in ( ) ( )( )( )ϕ 2
T

est
z t dz t dt, , the

system noise is not Gaussian. However, the Kalman filter can be
applied anyway.  Provided that C3) and C4) below hold with a
sufficient accuracy, the performance of the algorithm can be
expected to be close to that of an exact Kalman filter.

C3) ( ) ( ) ( ) ( )( ) ( )w w 0 Rt w t w t t NT T
= ∈1 2 12θ , and

      ( ) ( )[ ]E t t kTT
S kw w R+ = δ , .0 1

C4) The initial values ( ) ( ) ( )[ ]SS TttETtt −=− 0000 ||ˆ xxx  and

( ) ( ) ( )( ) ( ) ( )( )[ ]T
SSS TtttTtttETtt −−−−=− 00000000 |ˆ|ˆ| xxxxP

define  a Gaussian distribution of the prior state.

The Kalman filter is now given by the same equations
as the extended Kalman filter, see ( 19 ) below, replacing the
linearized parts with the  matrices described by  ( 14 ) – ( 16 ).

3.2. The Extended Kalman Filter

The extended Kalman filter differs from the Kalman filter in one
crucial point - the state propagation matrix is built up from the
estimated states rather than directly from measured data as
shown in  ( 17 ), ( 18 ). These states are replaced by estimated
states in the algorithm, as shown in the three last lines of ( 19 ).
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The equations ( 13 ) and ( 16 ) remain unaltered. Following [ 8 ]

the extended Kalman filter recursions are now given by

( ) ( ) ( )( )K P H HP Ht t t T t t T RS
T

S
T= − − +

−
| | 2

1

( ) ( ) ( ) ( ) ( )( )SS TtttztTtttt −−+−= |ˆ|ˆ|ˆ xHKxx

( ) ( ) ( )P P P Ht t t t T t t TS S
T| | |= − − −

              ( )( ) ( )× − + −
−

HP H HPt t T R t t TS
T

S| |2
1
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∂
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S
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( 19 )

     Remark 1: The modifications as compared to the Kalman
filter may seem minor. However, it is stressed that they are not.
First, since there are no nonlinear transformations of noisy
measurements, C3 can now be expected to hold exactly, and no
significant bias problems are expected. Secondly, the dynamics
of ( 17 ) and ( 18 ) is highly nonlinear. It is in fact polynomial.
Hence instability phenomena and even finite escape time effects
may come into play. See [ 5 ] for further details. �

4.  SIMULATION STUDY

The proposed algorithms were tested with data generated by a
Van der Pol oscillator as described in [ 5 ]. This systems can
here be described by the ODE

( )
dx
dt

dx
dt

x
x x x
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( 20 )

Data were generated by solving ( 20 ) with the MATLAB
routine ode45, using TS =0.010. Initial states were chosen as

( ) ( )( ) ( )x x
T T

1 20 0 0 000 1000= . . . White Gaussian noise

was added to ( )x t1 to obtain data with a signal to noise ratio of
15 dB. The algorithms were initialized with

( ) ( ) ( )( ) ( )TTT

S
T

SS TTxTx 0500.0500.0|0ˆ|0ˆ|0ˆ 221 −=−−− θ

and the remaining variables were selected as ( )P I0 10|− =TS ,

R I1
510= − and R2 1= . The parameter vector was selected

according to ( 9 ) and ( 12 ) with L M2 2 2= = . The
differentiating filter was selected as a simple finite difference.
The results are available in Fig. 1 - Fig. 3, where the Kalman
filter and the extended Kalman filter  are compared.
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Figure 1: Parameter convergence. Kalman filter (left) and
extended Kalman filter (right).

Figure2: True (dashed) and estimated (solid) phase plane plots.
Kalman filter (left) and extended Kalman filter (right).

Figure 3: True (dashed) and estimated (solid) spectra. Kalman
filter (left) and extended Kalman filter (right).

It can be concluded that the extended Kalman filter has a
superior performance. It appears to be unbiased, which is not
true for the Kalman filter. However, when a polynomial degree
of three was tried, the extended Kalman filter became unstable at
15 dB SNR, while the Kalman filter still delivered usable results.
For higher SNRs the extended Kalman filter again performed the
best. This is in line with the predictions of  section 3.

5.  CONCLUSIONS

The paper has presented a novel approach to the modeling of
harmonic signals. The main idea is to model the harmonic signal
with a second order nonlinear ordinary differential equation with
periodic orbits. Two algorithms were derived using this idea.
The Kalman filter, although biased, performed robustly and can
be recommended e.g. for initial value generation for the
extended Kalman filter. The latter algorithm showed a
performance that was superior to the Kalman filter.

Many open topics for further research exist. An
analysis of the asymptotic performance of the proposed methods
seems worthwhile. There are also fundamental issues related to
the problem setting. When is it e.g. possible to approximate any
periodic signal arbitrarily well by making a long enough
expansion of the right hand side of a second order ODE?
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