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ABSTRACT

This paper suggests a new approach to the problem of harmonic
signal estimation. The idea is to model the harmonic signal as a

function of the state of a second order nonlinear ordinary
differential equation (ODE). The function of the right hand side
of the nonlinear ODE is parameterized with a polynomial model.
A Kaman filter and an extended Kaman filter are then
developed. The proposed methodology reduces the number of
estimated unknowns in cases where the actua signal generation
resembles that of the imposed model. This is expected to result
in an improved accuracy of the estimated parameters, as
compared to existing methods.

1. INTRODUCTION

The modeling of signals with harmonic spectra has widespread
applications. Examples include vibration analysis and overtone
analysis in power networks. The measurement of linearity of
electronic power amplifiers and other devices using sinusoidal
inputs is another very important field of application.

One of the most widespread signal processing methods
ever, the periodogram method in combination with fast Fourier
transform (FFT) techniques, forms a baseline against which
harmonic signal analysis methods can be compared. See [ 1 ]
for detailed algorithms and performance anaysis issues.
Parametric methods for line spectra are directly applicable to the
harmonic signal estimation problem. The references [ 1 ]-[ 3 ]
discuss a number of such methods. Many theoretical results on
expected performance are availablein [ 1]-[ 4].

The present paper is inspired by a possible model for
the generation of periodic signals, namely nonlinear ordinary
differential equations (ODEs). There is a rich theory on the
subject asoutlined ine.g. [ 5]. Some of the strongest results of
the theory concern ODEs with two state variables. There are
several powerful theorems on the existence of periodic solutions

to ODEsin R? - hence it seems to be advantageous to base
estimation algorithms on second order ODEs.

The signal model used in the paper is obtained by
introducing a polynomial parameterization of the right hand side
of a general second order ODE, and by defining the harmonic
signal to be modeled as a function of the states of this ODE. A
Kalman filter algorithm [ 6 ] and a nonlinear approach using the
extended Kalman filter [ 6 ] are then described. Constraints are
imposed on the model structure to reduce the number of
parameters. It is shown that these constraints are valid for a very
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generd class of second order differential equations. Furthermore,
as compared to [ 7 ], the algorithms of the present paper are
recursive and less sensitive to noise.

What are the advantages offered by the approach
taken? First, many systems that generate harmonic signals are
best described by nonlinear ODEs. Examples include tunnel
diodes, pendulums, biological predator-prey systems and radio
frequency synthesizers, see [ 5]. Many of these systems are
described by second order ODEs with polynomial right hand
sides, and it can be expected that there are then good
opportunities to obtain highly accurate models by estimating
only afew parameters. Thisimplies that the achievable accuracy
would be improved, as compared to methods that do not impose
the same amount of prior information.

The paper is organized as follows. Section 2 introduces
the details on the model, including a definition of the
parameterization. Section 3 discusses algorithms, while section 4
presents a simulations. Conclusions appear in section 5.

2. THE ODE MODEL AND ITSPARAMETERIZATION
2.1. Measurements and modeled signals

The starting point is the discrete timemeasured signal

A1) = y(t) + (). (1)
Here y(t) is the continuous time signal to be modeled and
e(t) is the discrete time measurement. The condition
cy yt+T) =y(t), "tT R, 0<T<¥,

means that y(t) is assumed to be periodic. Furthermore, e(t) is
assumed to be zero mean Gaussian white noise, i.e.

c2) ¢t) T N(0s ?), E[e{t)eft + KT.)] =dy g *.

Ty denotes the sampling period.

2.2. Model structure and par ameterization

The main idea of the paper is to model the generation of the
signal y(t) by means of an ordinary differential equation of
order two. A genera model structure of thiskind is
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: :_aef1 x(t). %(t).a1)0
olx2 éfz (a(t). %(t).a2)5 (2)
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In(2)and(3) (xl(t) xz(t)) is the state vector, (q cz)
isthe vector with the selected output weighting factors and

a=( o) (4)

is the unknown parameter vector. Note that ( 2 ) is given in
continuous time, while ( 3) is adiscrete time equation.

Additional structure will now be imposed on the model
by choosing the state variables and the output relation as

0 &Yy 0O (5)

sz 2} 8dy/dm

(@ c)=(1 0, (6)
referring to the underlying second order ODE

d?y

ay_ dy (7)
dt?

®
fgl 1q2

Note that all systems where the measured quantity can be
modeled as ( 7 ) can be written as (5 ) and ( 6 ). This has the
advantage of reducing the number of parameters since

dx, /dt = x, and only fz(xl(t), xz(t),qz) of (2) needs to be

parameterized. Most often conventional physical modeling
resultsin ODEs where the measured quantity is the dependent
varigble, a fact that motivates the selection. Hence, the
constrained structure is believed to be a quite general one.

As stated in the introduction, the parameterization that
is used in this paper is chosen to be polynomial. Together with
(5)-(7),thischoice gives

fl(xl(t),xz(t),ql) = X%(t)
L) 5el)02) = & & G l)€l). (8

=0 m=0
2.3. Discretization

In order to formulate complete discrete time models, the

continuous time ODE model ( 2) needsto be discretized in time.
This is done by exploiting an Euler forward numerical
integration scheme. For simplicity, the discretization interval is

selected to be equal to the sampling period Tg. Theresultis

x(t+Ts) = (t) + Tox(t)
L, M,
Xz(t +Ts) = Xz(t) +Tsé é qZYLmX:II_(t)XEn(t) . (9)
=0 m=0

The model (9) can be compactly written as

%(t+Ts)- %(t) = Toxe(t) (10)

Xo(t+Ts)- xo(t) =i 2 (xa(t) % (t)

q,=

T
©2,0,0 qZ,LZ,Mz) '

Qoom, - Ya1,0 (12)

3. ALGORITHMS
3.1. The Kalman Filter

The Kalman filter is obtained by introduction of the parameters
as states, using a random walk assumption. Other aternatives
than a random walk assumption are possible. However the
choice used here is standard in the literature. Note that the

construction of the regression vector | z(xl(t), X5 (t)) of (11)

is based on the exact states - a requirement that cannot be met.
Two ideasto resolve this problem are presented in this paper.
The idea of the Kalman filter algorithm is to replace
the first state appearing in the regression vector by the measured
output signal, a choice that follows from the definition of the
output vector in ( 6 ). Because of the selected structure, the
second state is replaced by an estimate of the derivative of the
measured output signa. This latter signal, denoted

(dz(t)/dt)ﬁﬂ , is obtained from a differentiating filter.

The state vector of the Kalman filter is now augmented
with the estimated parameter vector asfollows

x()=(x() %() al() (13)

Together with (6), (9) - (12), thisresultsin
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Xt +7) = F(To, 40, (et Jxtt) + wit)
Z(t) = Hx(t) + €t) (14)

F(Ts 2(t) (cz(t) )

gm0
=¢0 1 jJ(dt) (/) )2 (15)
£ i) B

H:(l 0 OT). (16)

In order to complete the Kalman filter description,
noise properties and initial values need to be set. The
measurement noise properties follow from C2). Because of the

nonlinear data dependence in | ;(Z(t),(dz(t)/dt)g), the

system noise is not Gaussian. However, the Kaman filter can be
applied anyway. Provided that C3) and C4) below hold with a
sufficient accuracy, the performance of the algorithm can be
expected to be close to that of an exact Kalman filter.

cg) wit) =(waft) wa(t) wd(t)' T N(O.Ry)and
E[W(t)WT(t + kTS)] =doR;.
C4) The initia values;>‘<(t0 It, - Ts) = E[X(to)|X(t0- Ts)] and
Plt, It - o) = E[X(t,)- &(t It - T)x(t)- (11 - TS))']

define a Gauss an dlstrl bution of the prior state.

The Kalman filter is now given by the same equations
as the extended Kaman filter, see ( 19 ) below, replacing the
linearized parts with the matrices described by (14)—(16).

3.2. The Extended Kalman Filter

The extended Kalman filter differs from the Kalman filter in one
crucial point - the state propagation matrix is built up from the
estimated states rather than directly from measured data as
shown in (17), ( 18). These states are replaced by estimated
states in the algorithm, as shown in the three last lines of (19).

X[t +T5) = F(To x (0,5, 0 x(O) +w(t)  (17)
Zt) = Hx(t) + €lt)

a T 0
=¢0 1 j; (%0 g,

€ o

The equations ( 13) and ( 16 ) remain unaltered. Following [ 8 ]

J-O:

F(TS , xl(t), Xy (t))

sl 2

the extended Kalman filter recursions are now given by

K (t) =P(tlt- TS)HT(H P(tlt- Ts)HT +R2)'l
tIt

x(t1t) =x(tlt- To)+K(t)z(t)- Hx(t]t- TS))
P(tlt) =P(t|t- Ts)- P(t|t- Ts)H'
(HPt|t To)HT + Rz)'lHP(tn- Ts)
X(t+ T 1t)= F(T (t 1t)x(t 1)
- LF(T0
™ e

P(t+TIt)=

F(OPE|t)F () +R,.

(19)

Remark 1: The modifications as compared to the Kaman
filter may seem minor. However, it is stressed that they are not.
First, since there are no nonlinear transformations of noisy
measurements, C3 can now be expected to hold exactly, and no
significant bias problems are expected. Secondly, the dynamics
of (17 ) and ( 18) is highly nonlinear. It is in fact polynomial.
Hence instability phenomena and even finite escape time effects
may comeinto play. See[ 5] for further details. O

4. SIMULATIONSTUDY

The proposed algorithms were tested with data generated by a
Van der Pol oscillator as described in [ 5]. This systems can
here be described by the ODE

ﬂjxlo .

at .- F X2 0
gdﬁv 3 X1+2(1- xf)XZa (20)
€dt 9

Data were generated by solving ( 20 ) with the MATLABa
routine ode45, using TS =0.010. Initial states were chosen as

(x(0) x.(0))" =(0000 1000)"
was added to Xl(t) to obtain data with a signal to noise ratio of
15 dB. The adgorithms were initidized with
~ ~ A, \T

(©1-T.) %0l-Ts) 40O T.)] =( 0500 0500 o)
and the remaining variables were selected as P(O|— TS) =10l
R, = 10°l and R, =1. The parameter vector was selected
accordingto ( 9 ) and ( 12 ) with L, = M, =2. The
differentiating filter was selected as a simple finite difference.

The results are available in Fig. 1 - Fig. 3, where the Kaman
filter and the extended Kalman filter are compared.

. White Gaussian noise
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Figure 1. Parameter convergence. Kalman filter (left) and
extended Kalman filter (right).
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Figure2: True (dashed) and estimated (solid) phase plane plots.
Kaman filter (Ieft) and extended Kalman filter (right).

Figure 3: True (dashed) and estimated (solid) spectra. Kalman
filter (left) and extended Kalman filter (right).

It can be concluded that the extended Kalman filter has a
superior performance. It appears to be unbiased, which is not
true for the Kalman filter. However, when a polynomial degree
of three was tried, the extended Kalman filter became unstable at
15 dB SNR, while the Kalman filter still delivered usable results.
For higher SNRs the extended Kalman filter again performed the
best. Thisisin line with the predictions of section 3.

5. CONCLUSIONS

The paper has presented a novel approach to the modeling of
harmonic signals. The main idea is to model the harmonic signal
with a second order nonlinear ordinary differential equation with
periodic orbits. Two algorithms were derived using this idea.
The Kalman filter, although biased, performed robustly and can
be recommended eg. for initid vaue generation for the
extended Kaman filter. The latter agorithm showed a
performance that was superior to the Kalman filter.

Many open topics for further research exist. An
analysis of the asymptotic performance of the proposed methods
seems worthwhile. There are also fundamental issues related to
the problem setting. When is it e.g. possible to approximate any
periodic signa arbitrarily well by making a long enough
expansion of the right hand side of a second order ODE?
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