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Abstract –A novel approach to blindly estimate kernels of 
a Volterra nonlinear system up to the third order is 
proposed in this paper. The system is excited by an 
unobservable i.i.d. random sequence. Blind identifiability 
is achieved using second order statistics (SOS) rather than 
using higher order statistical (HOS) information to ensure 
lower complexity. Since the output of the Volterra system 
is linearly dependent upon its kernel parameters, 
conventional LMS or RLS algorithms can be used and 
consis tent estimation of Volterra kernels can be achieved 
provided some conditions of persistent excitation (PE) are 
satisfied. The simulation demonstrated the ability of the 
proposed method to achieve a good estimation 
performance.  
  

1. INTRODUCTION 
While linear models no doubt form most common way of 
describing dynamic systems, for most real-world practical 
applications, however, there are advantages to using 
nonlinear models to characterize the inherent nonlinear 
relationships. Discrete Volterra series is used to describe 
the input-output relation in a nonlinear domain, so that 
characterization, analysis and synthesis are easily 
amenable. Applications of Volterra nonlinear system 
theory have played an ever-increasing role in nonlinear 
signal processing, communication and control during 
recent decades [1]-[3]. One common difficulty 
encountered when one wants to apply the Volterra 
functional representation to nonlinear problem involves 
the determination of the Volterra kernels [3]. As a result, 
kernel identification has always been a subject of many 
studies, especially in the case of blind identification, 
which has to rely on the output signals and the statistical 
properties of the input signals. Much work on blind 
identification for nonlinear models has been done recently 
[4]-[6]. Although identification of the specific nonlinear 
Hammerstein systems was studied in [4], only the sampled 
linear sub-systems can be identified blindly. The algorithm 
in [5] considered the neural-network based quadratic 
kernel estimation, since there exists a complicated 
nonlinear relationship between kernels and system outputs 
in HOS domain. In [6], blind identifiability of quadratic 
models using both the second- and the third-order statistics 
was discussed, but no simulations were provided to verify 
the theoretical results.  
In this paper, the SOS-based blind kernel identification is  
considered up to the third-order Volterra systems. It is 

known that for blind identification, the SOS introduces an 
unknown bias into the final estimates if the output 
measurements are contaminated by additive Gaussian 
noises of unknown covariances. As will be shown, 
however, due to the linear relationship between the system 
output and the kernels in the SOS domain, unique kernel 
estimates exist if the system is persistently excited. 
Conventional adaptive signal processing algorithms such 
as LMS or RLS [7][8][9] then provide unbiased kernel 
estimates which means the influence of the noise at the 
output site is removed in the statistical sense for white 
noises. The organization of the paper is as follows. The 
problem as well as assumptions on the system model is 
delineated in Section 2. We present the procedure for blind 
identification of the third-order Volterra systems in SOS 
domain in Section 3. Simulations are provided in Section 4 
to verify the performance of the proposed identification 
algorithms and finally, a conclusion is drawn in Section 5. 
 

2. DESCRIPTION OF THE PROBLEM 
Assume that a system output {y(t)} is generated through a 
third-order Volterra model driven by a stationary input 
sequence {x(t)}. The observation )}({ tyo  is corrupted by 

an additive white Gaussian or non Gaussian noise )}({ tn w  
which is independent of {y(t)}. The system is then 
described as follows: 
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where the excited sequence of the model {x(t )} is an 
unobservable zero-mean i.i.d. signal with known 

0)]([= ≠txE i
ixγ , ∀ i=2, 3, 4, 5, 6. Unknown kernels 

include { ),,( ),,( ),( kjihjihih ; ∀ i, j, k=0, 1, ... , n}. 
Without any loss of generality, the kernels satisfy the 
following properties [3] (a) bounded: 

0),,( ),()( === kjihjihih , ∀ i, j, k>n; (b) causal: 

0),,( ),()( === kjihjihih ,∀ i, j, k<0; and (c) stable: 
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For any observed stationary random sequence )}({ tyo , its 
second-order moment is given by 
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where E denotes an expectation operation and   τ  refers to 
time lags of the sequence. 
 The objective of this study is to determine the third-order 
Volterra kernels  { ),,( ),,( ),( kjihjihih ; ∀ i, j, k=0, 1, ... , 
n} of model (1) based on the SOS properties of the 
measured output sequence )}({ tyo  in Eq.  (2). 
 

3. BLIND IDENTIFIABILITY OF THIRD-  
ORDER VOLTERRA SYSTEMS 

The following analysis bridges the gap between the SOS 
of the system output observations )}({ tyo  and the system 

itself { ),,( ),,( ),( kjihjihih ; ∀ i, j, k=0, 1, ... , n}. 
Let )}({ tx be an arbitrary zero-mean, i.i.d. random 
sequence that excites a third order Volterra system as in 
Eq.(1). Using Theorem 1 in [5] and the definition in 
Eq.(2), the second-order moment of output measurements 
of this system are obtained as follows  
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where ),,,( 21 jif x τγ  is a function of jix  , , ,2 τγ , 

),,,,( 32 kjif x τγ  is a function of kjix  , , , ,3 τγ , …, and so 
on and are given by: 
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The terms in Eq.(4) are given as follows for an i.i.d. 
random sequence )}({ tx  : 
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By substituting 521  ..., , , ααα  in Eq. (5a)~(5e) for the 

arguments of (.)x
im , i=2,…, 6 in Eq. (4), we determine 

),,,( 21 jif x τγ  as a function of jix  , , ,2 τγ , ),,,,( 32 kjif x τγ  

as a function of kjix  , , , ,3 τγ , …, and so on. For example,  
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Therefore, Eq. (3), the result, follows immediately. 
Indeed, Eq. (3) can be rewritten as a matrix representation. 
Assume the time lag ],1[ p∈τ , we construct a pp ×  

matrix xM as 
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where p is defined as 
65432 )1()1(2)1(3)1(2)1( +++++++++= nnnnnp .  In 

Eq. (6) (.)1f  is a 2)1(1 +× n  vector 

)],,,( ... )0,0, ,([)( 21211 nnfff xx τγτγτ = , τ =1, 2, …, p. 

Similarly, (.)2f  is a  3)1(1 +× n  vector 

)],,, ,( ... )0,0,0, ,([(.) 32322 nnnfff xx τγτγ= , τ =1, 2, …, 

p, …, and finally (.)9f  is a 6)1(1 +× n  vector 

)],,,,,,,,,(                                     

)...0,0,0,0,0,0,,,,([(.)

6
2
3429

6
2
34299

nnnnnnf

ff

xxxx

xxxx

τγγγγ

τγγγγ=

, τ =1, 2, …, p. 
The corresponding 1×p  output moment vector yM ,  

1×p  noise moment vector 
wnM  and 1×p  system kernel 

vector H are respectively given by 
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Consequently, it is straightforward to formulate the 
following matrix expression of Eq. (3) 

wnxy MHMM +=                                (14) 

 
Our goal is to determine the elements of H (for a third 
order Volterra system) given xM , yM and 

wnM . This 

blind identification of the third-order Volterra systems is 
then provided in the following theorem. 
 
[Theorem 1] The third-order Volterra system (1) is blindly 
identifiable if it is persistently excited (PE); i.e. if the 

pp ×  matrix xM  is nonsingular. 

Proof. Since 0)(2 =τwnm , 0≠∀τ , 
wnM =0. If xM  is 

nonsingular, it is easy to find that 

yx MMH 1−=                                        (15) 
which yields the desired result. 
 
Bearing in mind that a consistent estimate of )(2 τoym  is 
obtained by [9] 

∑ +=
Ω∈

Ω
∞→Ω t

ooN

oy tyty
N

m )()(
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lim)(ˆ 2 ττ                 (16) 

where ΩN  is the number of output samples in region Ω . 

Substituting (.)2
oym  of (7) by the estimated (.)ˆ

2
oym  in (16) 

implies the consistent kernel estimate 
  )(limˆ 1

Ω
−

∞→Ω
= NMMH yxN

                                    (17) 

It is clear that an adaptive algorithm such as LMS or RLS 
[7][8][9] realizes the matrix equation in (15) in an iterative 
way with an expected performance in a statistical sense.  
Particularly noteworthy is the fact that if the matrix xM  is 
singular, the kernel estimates can also be achieved through 
(i) reducing the pp ×  matrix xM  to a pq ×  matrix xM  

where q<p and rank ( xM )=q in terms of singular value 
decomposition (SVD) [9] or (ii) using steepest descent 
strategy [9] or (iii) presetting some of Volterra parameters 
as zeros in the sense that sparse Volterra systems are 
considered, which is reasonable in some practical 
situations.  
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4. SIMULATIONS 
In this section, we provide two simulated numerical 
examples. Let the unknown truncated Volterra systems be  
Model 1:   )(+)()0,0(=)( 2 tntxhty wo                           (18) 

Model 2: )(+)1()1,1,1()()0,0(=)( 32 tntxhtxhty wo −+  (19) 

where h(0,0)=1 for model 1 and h(0,0)=2, h(1,1,1)=1 for 
model 2. Generally an i.i.d. exponential distributed 
random sequence {x(t)} with zero mean is generated as the 
input signals. We assume the model output observations 
are corrupted by white Gaussian noise )}({ tn w , where 

signal-to-noise-ratio 
))((
))((

log20 2

2

10 tnE

tyE
SNR

w

= =18 dB. It 

is concluded from Eq. (16) that a larger ΩN  is capable of 

providing a more accurate estimate of )(2 τoym . In the 

study, 4096 ( ΩN ) output samples which are computed by 
convolving the random inputs with the true model (18) 
and (19) are utilized. To verify the theoretical analysis, 50 
Monte Carlo runs are performed. It is not difficult to find 
that these two models are persistently excited. The final 
results, kernel estimates as well as the corresponding 
standard deviations are summarized in Table 1 and 2, 
respectively for model 1 and 2. It is indicated that the 
estimated Volterra kernels are very close to their true 
values even under a lower SNR environment.  
 

5. CONCLUSION 
In this paper, we considered blind identification of third-
order Volterra systems using only Second Order Statistics 
in the time domain. The unobservability assumption of 
input i.i.d. random sequence requires that the kernel 
estimation be performed based on the output observations 
only. It is shown that under a persistent excitation 
condition, the determination of the Volterra kernels is 
reduced to a linear modeling problem and can be resolved 
by typical adaptive techniques. While the HOS-based 
approach with significantly more computational cost is 
capable of removing the effect of Gaussian noise 
corrupting the output measurements, the SOS-based kernel 
estimation scheme can remove white noise with any 
distribution and offers significant reduction in the 
computational burden. Simulation results indicate the 
effectiveness of the proposed method for blind 
identification of any truncated third-order Volterra 
nonlinear systems. The compromise between HOS and 
SOS-based use is an interesting one for further study. 
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Table 1 True and estimated Volterra kernels of the model 
1, with the corresponding means (standard deviations) 

under 50 Monte Carlo runs 
h(0,0) ∞=SNR  dB18=SNR  
true 1 1 

estimated 0.9976(0.1030) 1.0997(0.0948) 
 
 

Table 2 True and estimated Volterra kernels of the model 
2, with the corresponding means (standard deviations) 

under 50 Monte Carlo runs 
 ∞=SNR  dB18=SNR  

true h(0,0) 2 2 
est. h(0,0) 2.0948(0.1777) 2.1477(0.2606) 

true h(1,1,1) 1 1 
est. h(1,1,1) 0.9605(0.0689) 0.9420(0.0903) 
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