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Abstract —A novel approach to blindly estimate kernels of
a Volterra nonlinear system up to the third order is
proposed in this paper. The system is excited by an
unobservable i.i.d. random sequence. Blind identifiability
is achieved using second order statistics (SOS) rather than
using higher order statistical (HOS) information to ensure
lower complexity. Since the output of the Volterra system
is linearly dependent upon its kernel parameters,
conventional LMS or RLS algorithms can be used and
consistent estimation of Volterra kernels can be achieved
provided some conditions of persistent excitation (PE) are
satisfied. The simulation demonstrated the ability of the
proposed method to achieve a good estimation
performance.

1. INTRODUCTION

While linear models no doubt form most common way of
describing dynamic systems, for most real-world practical
applications, however, there are advantages to using
nonlinear models to characterize the inherent nonlinear
relationships. Discrete Volterra series is used to describe
the input-output relation in a nonlinear domain, so that
characterization, analysis and synthesis are easily
amenable. Applications of Volterra nonlinear system
theory have played an ever-increasing role in nonlinear
signal processing, communication and control during
recent decades [1]-[3]. One common difficulty
encountered when one wants to apply the Volterra
functional representation to nonlinear problem involves
the determination of the Volterra kernels [3]. As a result,
kernel identification has always been a subject of many
studies, especially in the case of blind identification,
which has to rely on the output signals and the statistical
properties of the input signals. Much work on blind
identification for nonlinear models has been done recently
[4]-[6]. Although identification of the specific nonlinear
Hammerstein systems was studied in [4], only the sampled
linear sub-systems can beidentified blindly. The algorithm
in [5] considered the neural-network based quadratic
kernel estimation, since there exists a complicated
nonlinear relationship between kernels and system outputs
in HOS domain. In [6], blind identifiability of quadratic
models using both the second- and the third-order statistics
was discussed, but no simulations were provided to verify
the theoretical results.

In this paper, the SOS-based blind kernel identification is
considered up to the third-order Volterra systems. It is
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known that for blind identification, the SOS introduces an
unknown bias into the final estimates if the output
measurements are contaminated by additive Gaussian
noises of unknown covariances. As will be shown,
however, due to the linear relationship between the system
output and the kernels in the SOS domain, unique kernel
estimates exist if the system is persistently excited.
Conventional adaptive signal processing algorithms such
as LMS or RLS [7][8][9] then provide unbiased kernel
estimates which means the influence of the noise at the
output site is removed in the statistical sense for white
noises. The organization of the paper is as follows. The
problem as well as assumptions on the system model is
delineated in Section 2. We present the procedure for blind
identification of the third-order Volterra systems in SOS
domain in Section 3. Simulations are provided in Section 4
to verify the performance of the proposed identification
agorithms and finally, aconclusion is drawn in Section 5.

2. DESCRIPTION OF THE PROBLEM
Assume that a system output {y(t)} is generated through a
third-order Volterra model driven by a stationary input

sequence {x(t)}. The observation {y, (t)} is corrupted by
an additive white Gaussian or non Gaussian noise {n_(t)}
which is independent of {y(t)}. The system is then
described as follows:
y(H) =& hi)x(t - 1)
+4 & h(, )Xt - x(t- ) (1a)
i=0j=l
+A & AN, |, KX - i)X{E- )Xt - k)
i=0j=0k=0
Y, ®)=y®) +n,(t) (1b)
where the excited sequence of the model (t)} is an
unobservable zero-mean i.i.d. signal with known
g, =E[x ()10, "i=2, 3, 4, 5 6. Unknown kernels
include {h(i),h(, j), h(i, j,k);" i, j, k=0, 1, .. , n}.
Without any loss of generality, the kernels satisfy the
following properties [3] €) bounded:
h(i) =h(, j)=h(, j,k)=0, " i, j, k>n; (b) causa:
h(i) =h(, j)=h(i, j,k) =0," i, j, k<0; and (c) stable:
h(i)|<¥ ., & |nG, j)|<¥ and &|nG, j,k)|<¥ .
i i

j.K

a
For any observed stationary random sequence {y, (t)} , its
second-order moment is given by
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my® () = E{[y, MI[Y, t - t)I} )
=m; (t) +myv(t)

where E denotes an expectation operation and t refersto
time lags of the sequence.
The objective of this study is to determine the third-order
Volterra kernels { h(i), h(, j), h(i, j,k) ;" i, j, k=0, 1, ...,
n} of model (1) based on the SOS properties of the
measured output sequence{ y, (t)} inEq. (2).

3.BLIND IDENTIFIABILITY OF THIRD-
ORDER VOLTERRA SYSTEMS
The following analysis bridges the gap between the SOS
of the system output observations{ y_(t)} and the system

itsdlf { h(i), h(, j), h(i, j,K) ;" i,],k=0, 1, ..., n}.
Let{x(t)} be an arbitrary zero-mean, i.i.d. random

seguence that excites a third order Volterra system as in
Eqg.(1). Using Theorem 1 in [5] and the definition in
Eq.(2), the second-order moment of output measurements
of this system are obtained as follows

n

mye (t) = iv«'?lzoh(i)h(J')fl(QZX,t s 1)

n

+ & h()h(j,k) £, (gt 1, j.k)

i,j,k=0

- QLN AN ACH AR NNAY)
i,j.kl=0

+ an h(i, j)h(k) f4(gzx,t a4, J,K)
i,j,k=0

+ AN, kD) f (G Qoo b, 1, K01)

i,j,kl=0

+ AN DL (GGG t 1, JK1LS) (3
+ & h(, N0, Gt 1k D)
1,],K) =

+ ah(, j.kh(, 910,90t 1., k1, 9)
s=0

:*_'QJO:

ij
n

+ ah(i,j,kh(l,s,v)

i,jkl,sv=0
fo(Qu0 oo G bl 1K1, 8 V)
+mp(t)
where f(g,.t.i,j) is a function of g,,t,i,j,

f,(g,.t.i, j,k) isafunction of g, ,t,i, j,k, ..., ad so
on and are given by:

I f (Dot )

i =my(t+ - i)

i fo(Got,i,],K)

: Smit+j-it+k-i)

i GGGt ik

: =myt +j-it+k-it +l-1i)

:| f4(gsxvt ’i’ Jvk)

: =mi(j- it +k-i)

|, f5(¢xlgxytalajykal) (4)
: S (- it ke - 1)

:l fG(Qngx’gox'tJ’j'k’l!S)

IR E R SR TR R

:I f7(922x’g4xlt5iij|k;|)

: =m(j-i k-t +1- i)

i (@G a0t ik ls)

: =mi(j-ik-it+l1-it+s-i)

| f9(92xg4x’g§x'gxit !iy j,k,l,S,V)

Y=mp(- k- it +l- it +s-it+v-i)
Thetermsin Eq.(4) are given asfollowsfor ani.i.d.
random sequence { x(t)} :

m*(a)-i Goxt” 8 =0 (5a)
2700, otherwise

ig." & =a,=0
m;(ay,a,) = | 5b
(@) io, otherwise (50)

m; (&, a,,a,)
g, a =0i=1..,3

1 anda, =a,,jk=1.,3 ]! k]| (50)
:::9“," a =a,=a,=0
10, otherwise
mi(a,,a,,a,,a,)
10,0,.," @ =0,i =1...,4,and
: a =a, =a, jkl=L.4jt k1]
1 o"a =a; =0,i,j=1.,4i* j,and
: a =a, kl=1.4Kkt[1it ]
:::g_,,x, "a =a,=a,=a, =0
o, otherwise

(5d)
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m@,.a,.a,a,a;)
i9,09,." &, =0,i=1..5,and

a, =a, =a =a, j,kl,s=1..5jt kIt sti

o"a=a =a,=0,,j,k=1.,5it j! k,and

a=a,l,s=1.,5ltstitjrtk
g."a=a;=0i/j=L.5i?! jand

a =a =a,=0,kl,s=1..,5kt 11t stjl ]
G ATHR=A=a,=a;=0
0, otherwise

(5€)

in Eq. (58)~(5e) for the
arguments of m*() , i=2,..., 6 in Eq. (4), we determine
f(g,.t.i,]) asafunctionof g,,t,i,j, f,(g,.t.i,j k)
asafunction of g, ,t,i, j,k, ..., and so on. For example,
R

Therefore, Eq. (3), the result, followsimmediately.
Indeed, Eg. (3) can be rewritten as a matrix representation.
Assume the time lag t 1 [1 p], we construct a p~ p

matrix M_as

By substituting a,,a,,.., a,

ef,® 0 f,M 0
e u

w, =eh@ L@ L@y ©
@: : : l}
&f.(p) f,(p) f,(p)f

where p is defined as

p=(n+)2+2(n+1)°%+3(n+D* +2(n+1° +(n+D°. In
Eq. (6) f,() is a 1 (n+1? vector
f.t)=[f(9,.t.00)..f (g, .t.,nn)], t=1 2 .. p
Similarly, f,() is a 1" (n+1)*  vector
f,()=[f,(9,.1.000)..f (g, .t,n,nn], t =1, 2, ..,
p, .., and finaly f () is a 1 (n+1)° vector
fo () =[f, (9,9, 9, G, 1,0,0,0,0,00)...

fo (9 Gax: Gis G £, 0 1,1, N, N, )]
, =12, ...,p.
The corresponding p” 1 output moment vector M,
p~ 1 noise moment vector M, and p” 1 system kernel

vector H arerespectively given by

M, =[my @0),m* @2)....m" (p),]" (7)
M, =[m" (@), ),....m" (p).]" ®)

H=[HG, ), HG, 5K, HG G KD, HG 5 kST
©)

H(i, j) =[h?(0), h2(D), ..., h3(n), N(Q)h(L), ..., h(n - Dh(n)]"
(10)
H(i, j, k) =[h(0)h(0,0), h(O)h(L), ..., h(n)h(n, 1),
h(0)h(0), .., h(nh(n - L,n)]"
H(, j, k,1) = [h(0)h(0,00), h(O)h(LLY), .., h(n)h(n,n, ),
h(0)h(0,0), ..., h()h(n- L,n- 1,n)]"

(11)

(12)
H(i,j,k,I,sVv)=[n?(00,0),h?*(0,03),.., h*(n,n,n),
h(0,0,0)h(0,0,0), ..., h(n,n,N)h(n- L, n-,n- 1)]"
(13)
Consequently, it is straightforward to formulate the
following matrix expression of Eg. (3)
M, =M,H+M (14)

Our goal is to determine the elements of H (for a third
order Volterra system) given M , M and M . This

blind identification of the third-order Volterra systems is
then provided in the following theorem.

[Theorem 1] The third-order Volterra system (1) is blindly
identifiable if it is persistently excited (PE); i.e. if the
p° p matrix M_ isnonsingular.
Proof. Sincemy*(t)=0, "t*0, M _=0. If M_is
nonsingular, it iseasy to find that

H=M,M, (15)
which yields the desired result.

Bearing in mind that a consistent estimate of mX (t) is
obtained by [9]
. 1

£ Yo = 35 +

My t) = lim, N e Oy, (t+1t) (16)
where N, isthe number of output samplesin region W.
Substituting mX (.) of (7) by the estimated m)° () in (16)
impliesthe consistent kernel estimate

H= Jm MM (N,) (17)
It is clear that an adaptive algorithm such as LMS or RLS
[71[8][9] realizes the matrix equation in (15) in an iterative

way with an expected performance in a statistical sense.
Particularly noteworthy is the fact that if the matrix M _is

singular, the kernel estimates can also be achieved through
(i) reducing the p° p matrix M _toa q  p matrix I\TX
where g<p and rank (I\Tx )=qg in terms of singular value
decomposition (SVD) [9] or (ii) using steepest descent
strategy [9] or (iii) presetting some of Volterra parameters
as zeros in the sense that sparse Volterra systems are

considered, which is reasonable in some practical
situations.
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4. SIMULATIONS
In this section, we provide two simulated numerical
examples. Let the unknown truncated Volterra systems be
Model 1.y (t) = h(0,0)x*(t)+n, (t) (18)
Model 2: y_(t) = h(0,0)x*(t) + h(Q,1L)x3(t - 1) +n_(t) (19)
where h(0,0)=1 for model 1 and h(0,0)=2, h(1,1,1)=1 for
model 2. Generally an i.i.d. exponential distributed
random sequence { x(t)} with zero mean is generated as the
input signals. We assume the model output observations
are corrupted by white Gaussian noise {n (t)} , where

E(y*(®))
E(n;,(1)
is concluded from Eq. (16) that alarger N, is capable of
providing a more accurate estimate of mX(t). In the
study, 4096 (N,,) output samples which are computed by

convolving the random inputs with the true model (18)
and (19) are utilized. To verify the theoretical analysis, 50
Monte Carlo runs are performed. It is not difficult to find
that these two models are persistently excited. The final
results, kernel estimates as well as the corresponding
standard deviations are summarized in Table 1 and 2,
respectively for model 1 and 2. It is indicated that the
estimated Volterra kernels are very close to their true
values even under alower SNR environment.

signal-to-noiseratio SNR=201log,, =18 dB. It

5. CONCLUSION

In this paper, we considered blind identification of third-
order Volterra systems using only Second Order Statistics
in the time domain. The unobservahility assumption of
input i.i.d. random sequence requires that the kernel
estimation be performed based on the output observations
only. It is shown that under a persistent excitation
condition, the determination of the Volterra kernels is
reduced to a linear modeling problem and can be resolved
by typical adaptive techniques. While the HOS-based
approach with significantly more computational cost is
capable of removing the effect of Gaussian noise
corrupting the output measurements, the SOS-based kernel
estimation scheme can remove white noise with any
distribution and offers significant reduction in the
computational burden. Simulation results indicate the
effectiveness of the proposed method for blind
identification of any truncated third-order Volterra
nonlinear systems. The compromise between HOS and
SOS-based use is an interesting one for further study.
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Table 1 True and estimated Volterra kernels of the model
1, with the corresponding means (standard deviations)
under 50 Monte Carlo runs

h(0,0) SNR=¥ SNR=18dB
true 1 1
estimated 0.9976(0.1030) 1.0997(0.0948)

Table 2 True and estimated Volterra kernels of the model
2, with the corresponding means (standard deviations)
under 50 Monte Carlo runs

SNR=¥ SNR=18dB
true h(0,0) 2 2
est. h(0,0) 2.0948(0.1777) 2.1477(0.2606)
true h(1,1,1) 1 1
est. h(1,1,1) | 0.9605(0.0689) 0.9420(0.0903)
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