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ABSTRACT

In this work, we present a multiple window Evolutionary
Spectral analysis on a non-rectangular time-frequency lat-
tice based on a discrete fractional Gabor expansion. The
traditional Gabor expansion uses a fixed, and rectangular
time-frequency plane tiling. Many of the practical signals
such as speech, music, etc., require a more flexible, non-
rectangular time-frequency lattice for a compact represen-
tation. The proposed method uses a set of basis functions
that are related to the fractional Fourier basis and generate a
parallelogram-shaped tiling. Simulation results are given to
illustrate the performance of our algorithm.

1. INTRODUCTION

Time-frequency (TF) analysis provides a characterization
of signals in terms of joint time and frequency content [1].
Evolutionary Spectrum (ES) is one of the TF analysis meth-
ods [2] which is based on the decomposition of signals into
sinusoids with random and time-varying amplitudes. In our
previous work, we present a method to estimate the ES of
discrete-time, non-stationary signals using Gabor expansions
[3]. The Gabor expansion is a TF decomposition which
represents a signal in terms of time and frequency trans-
lated basis functions [4]. Gabor basis functions are obtained
by shifting and modulating with a sinusoid a single win-
dow function, which results in a fixed and rectangular TF
plane tiling. However, many of the practical signals such
as speech, music, biological, and seismic signals have time-
varying frequency nature that is not appropriate for this type
of analysis [5, 6]. Thus the Gabor expansion of such signals
will require large number of coefficients yielding a poor TF
localization [7, 8]. Therefore, the ES estimate we obtain
by using the Gabor expansion suffers from a TF resolution
problem. Here we present an ES analysis method based on
a new, fractional Gabor expansion that uses a more flexible,
parallelogram-shaped TF lattice [9]. The basis functions of
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the proposed expansion are related to the fractional Fourier
series basis [10].

2. ES ANALYSIS BASED ON GABOR EXPANSIONS

In [3], we present an Evolutionary Spectral (ES) estimate
based on a multi-window Gabor expansion. In the follow-
ing, we briefly present the discrete multi-window Gabor ex-
pansion, and our ES estimation.

2.1. A Multi-window Gabor Expansion

Multi-window Gabor expansion [3] represents a signal in
terms of scaled and time and frequency shifted basis func-
tions and is given for a finite-support signalx(n), 0 ≤ n ≤
N − 1 by

x(n) =
1
I

I−1∑

i=0

M−1∑
m=0

K−1∑

k=0

ai,m,k g̃i,m,k(n) (1)

where the basis functions are

g̃i,m,k(n) = g̃i(n−mL)ejωkn (2)

and ωk = 2πkL′/N . Here the synthesis window̃gi(n)
is a periodic version byN of a time-scaled Gabor win-
dow asgi(n) = 2i/2 g(2in), i = 0, 1, ..., I − 1, [4] I is
the number of windows used and Gabor expansion param-
etersM , K, L, andL′ are positive integers constrained by
ML = KL′ = N whereM andK are the number of anal-
ysis samples in time and frequency, respectively. The Gabor
coefficients can be calculated by

ai,m,k =
N−1∑
n=0

x(n) γ̃∗i,m,k(n) (3)

where γ̃i,m,k(n) = γ̃i(n − mL) ej 2πk
K n and γ̃i(n) anal-

ysis window is solved from the biorthogonality condition
betweeñgi(n) andγ̃i(n) [4]. Gabor basis{γ̃i,m,k(n)} with
fixed window and sinusoidal modulation tiles the TF plane
in a rectangular fashion. Such methods usually provide sig-
nal representations with poor TF resolution [5].
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2.2. Evolutionary Spectral Analysis

We obtain in [3] an evolutionary spectral estimate based on
the Gabor coefficients. We consider the following discrete-
time, discrete-frequency model for finite-extent, determin-
istic signals that is analogous to the Wold-Cramer represen-
tation of non-stationary random signals:

x(n) =
K−1∑

k=0

A(n, ωk)ejωkn, 0 ≤ n ≤ N − 1, (4)

whereωk = 2πk/K, andA(n, ωk) is a time-frequency ker-
nel. Comparing the two representations ofx(n) in (1) and
(4), we have that the kernel is

A(n, ωk) =
1
I

I−1∑

i=0

M−1∑
m=0

ai,m,k g̃i(n−mL)

=
N−1∑

`=0

x(`) w(n, `) e−jωk` (5)

where we substituted for the coefficients{ai,m,k} and de-
fined the time-varying window

w(n, `) =
1
I

I−1∑

i=0

M−1∑
m=0

γ̃∗i (`−mL)g̃i(n−mL). (6)

Then the evolutionary spectrum ofx(n) is obtained by

SES(n, ωk) =
1
K
|A(n, ωk)|2, (7)

where the factor1/K is used for proper energy normal-
ization. The above ES analysis method with a fixed, and
rectangular TF lattice yields a poor resolution. Several ap-
proaches have been proposed to improve the resolution of
such sinusoidal representations: some of them are averaging
estimates obtained using different windows [3], and max-
imizing energy concentration measures [5, 7]. In recent
works, representations on a non-rectangular TF grid has at-
tracted a considerable attention [6, 9]. A non-rectangular
lattice is more appropriate for the TF analysis of signals
with time-varying frequency content.

3. DISCRETE FRACTIONAL GABOR EXPANSION

We define a discrete fractional multi-window Gabor expan-
sion forx(n), 0 ≤ n ≤ N − 1, as follows:

x(n) =
1
I

I−1∑

i=0

M−1∑
m=0

K−1∑

k=0

ai,m,k,α g̃i,m,k,α(n) (8)

whereai,m,k,α are the fractional Gabor coefficients,α is the
order of the fraction, and the basis functions are

g̃i,m,k,α(n) = g̃i(n−mL) Wα,k(n)

Here g̃i(n) is defined as above, andWα,k(n) is the frac-
tional kernel,

Wα,k(n) = ej[− 1
2 (n2+(ωk sin α)2) cot α+ωkn]

which is similar to the Fractional Fourier Series basis func-
tions presented in [10], and againωk = 2πk/K. Above
basis functions with this fractional kernel generate a par-
allelogram shaped TF sampling geometry. The expansion
in (8) reduces to the above sinusoidal Gabor expansion for
α = π/2. The parametersM , K, L, andL′, are same as
in the traditional Gabor expansion. For numerically stable
solutions we need thatL ≤ K. The case whereL = K
is called the critical sampling, and the case whereL < K
is the oversampling. In our derivations, we always consider
the general, oversampled case. The Gabor coefficients can
be evaluated as before by

ai,m,k,α =
N−1∑
n=0

x(n) γ̃∗i,m,k,α(n) (9)

where the analysis functions are

γ̃i,m,k,α(n) = γ̃i(n−mL) Wα,k(n)

andγ̃i(n) is periodic version of aγi(n) that is solved from
a fractional biorthogonality condition betweengi(n) and
γi(n).

To obtain the completeness condition for the fractional
Gabor basis for scalei, substitute (9) in (8):

x(n) =
M−1∑
m=0

K−1∑

k=0

(
N−1∑

`=0

x(`)γ̃∗i (`−mL)W ∗
α,k(`)

)

× g̃i(n−mL)Wα,k(n)

=
N−1∑

`=0

M−1∑
m=0

K−1∑

k=0

g̃i(n−mL)γ̃∗i (`−mL)

× ej[− 1
2 (n2−`2) cot α+ωk(n−`)]

From the above equation, we obtain the completeness rela-
tion for basis{g̃i,m,k,α(n)} as

M−1∑
m=0

K−1∑

k=0

g̃i(n−mL)γ̃∗i (`−mL)ej[− 1
2 (n2−l2) cot α]

× ej ωk(n−`) = δ(n− `) (10)

The fractional biorthogonality condition that we need to solve
the analysis or dual functionγi(n) is obtained from the
above completeness relation using a discrete Poisson sum
formula as:

N−1∑
n=0

g̃∗i (n + mK)ejk 2π
L (n+mK)γ̃i(n)

×ej(nmK+ m2K2
2 ) cot α =

L

K
δmδk

0 ≤ m ≤ L′ − 1, 0 ≤ k ≤ L− 1 (11)
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Fig. 1. A Gauss synthesis window (top figure), and its
biorthogonal windows in critical (middle) and oversampling
(bottom) cases.

Completeness and biorthogonality conditions given in equa-
tions (10) and (11) reduce to the conditions in the tradi-
tional case [4] forα = π/2. This indicates that the above
fractional expansion is the generalization of the Gabor ex-
pansion. In Fig. 1, we show a Gauss windowgi(n), n =
0, 1, · · · , 127 on the top figure, and its biorthogonalγi(n)
for two different set of sampling parameters obtained by
solving equation (11) forα = π/4. The window in the
middle is obtained usingL = 16,K = 16 that is the criti-
cal sampling. The window at the bottom is calculated with
L = 8, K = 64 as an example of the oversampling.

4. FRACTIONAL EVOLUTIONARY SPECTRAL
ANALYSIS

In this section we present a fractional evolutionary spectral
analysis method based on the above Gabor expansion. Here
we consider the discrete–time, and discrete–frequency rep-
resentation forx(n) given in equation (1). Comparing this
with the fractional Gabor representation in (8), we get the
time–frequency kernel using window̃gi(n) as

A(n, ωk) =
1
I

I−1∑

i=0

M−1∑
m=0

ai,m,k,α g̃i(n−mL)

× e−j 1
2 (n2+(ωk sin α)2) cot α (12)

20 40 60 80 100 120
−0.02

−0.01

0

0.01

0.02

A
m

p
lit

u
d

e

p
i
(32,l) and p

i
(80,l) windows and their spectrograms

20 40 60 80 100 120
−0.02

−0.01

0

0.01

0.02

A
m

p
lit

u
d

e

20 40 60 80 100 120

1

2

3

Time [n]

F
re

q
u

e
n

c
y
 [
ra

d
]

Fig. 2. The time–varying chirp window used in ES for
n = 32 (top figure),n = 80 (middle) and their spectrogram
(bottom).

After replacing for the coefficients in (9) we have that

A(n, ωk) =
N−1∑

`=0

x(`)
1
I

I−1∑

i=0

pi(n, `) e−jωk`

=
1
I

I−1∑

i=0

Ai(n, ωk) (13)

where we defined the time-varying, fractional- modulated
window,

pi(n, `) =
M−1∑
m=0

g̃i(n−mL)γ̃∗i (`−mL)ej 1
2 (`2−n2)) cot α

The equation in (13) can be interpreted as the average of
short-time Fourier transforms with scaled, time-dependent
and non-sinusoidal modulated windowspi(n, `). The frac-
tional evolutionary spectrum is then obtained as before. Fur-
thermore, pi(n, `) can be calculated independent of the sig-
nal and then the calculation of the ES can be achieved very
efficiently using FFT. In Fig. 2, we show an example of
this time-varying fractional windowpi(n, `) for α = π/4
at time instantsn = 32 andn = 80 and their spectrogram
together.

5. EXPERIMENTAL RESULTS

We consider a signal composed of two crossing chirps -one
with increasing frequency and the other decreasing frequency-
with anglesπ/4 and−π/4 is considered. This signal is first
analyzed withα = π/4, L = 4,K = 128, andI = 4 and
ES estimate is given in Fig. 3. Notice that increasing chirp
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is represented with higher TF localization since the fraction
order matches this component. Then the ES is estimated
usingα = −π/4 fraction order and same sampling param-
eters and the result is given in Fig. 4. As shown from the
figures, the component that is matched by the fraction order
is displayed in the TF plane with a high resolution.

6. CONCLUSIONS

In this paper, we present a method for fractional evolution-
ary spectral analysis of discrete-time, non- stationary sig-
nals. The evolutionary kernel is obtained via the coefficients
of a fractional Gabor expansion. We give the completeness
and biorthogonality conditions of this new expansion. Sim-
ulations show that the fractional method gives high resolu-
tion ES results if the analysis fraction order match the fre-
quency content of the signal. Hence, for an arbitrary sig-
nal, the fraction orderα can be chosen from a set of val-
ues{α1, α2, · · · , αp} by maximizing a concentration crite-
ria similar to the method used in [5, 7].
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Fig. 3. ES estimate of the crossing chirp signal withα =
π/4.
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Fig. 4. ES estimate usingα = −π/4.
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