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ABSTRACT the proposed expansion are related to the fractional Fourier

In this work, we present a multiple window Evolutionary series basis [10]

Spectral analysis on a non-rectangular time-frequency lat-
tice based on a discrete fractional Gabor expansion. The2- ES ANALYSIS BASED ON GABOR EXPANSIONS

traditional Gabor expansion uses a fixed, and rectangular . _
time-frequency plane tiling. Many of the practical signals N [3], we present an Evolutionary Spectral (ES) estimate

such as speech, music, etc., require a more flexible, ncm_.based on a multi-window Gabor expansion. In the follow-

rectangular time-frequency lattice for a compact represen-'ng’ we briefly present thg dlgcrete multi-window Gabor ex-
tation. The proposed method uses a set of basis functiond@nsion, and our ES estimation.

that are related to the fractional Fourier basis and generate a

parallelogram-shaped tiling. Simulation results are given to 2.1. A Multi-window Gabor Expansion

illustrate the performance of our algorithm. Multi-window Gabor expansion [3] represents a signal in

terms of scaled and time and frequency shifted basis func-

1. INTRODUCTION tions and is given for a finite-support signdl), 0 <n <
N —1by
Time-frequency (TF) analysis provides a characterization M1 K1
of signals in terms of joint time and frequency content [1]. _ 1 ) ~ 1
Evolutionary Spectrum (ES) is one of the TF analysis meth- z(n) I Z Z @ik it () @)

ods [2] which is based on the decomposition of signals into 170 M0 R
sinusoids with random and time-varying amplitudes. In our
previous work, we present a method to estimate the ES of Gimke(n) = Gi(n — mL)eJ'ww )
discrete-time, non-stationary signals using Gabor expansions , o -

[38]. The Gabor expansion is a TF decomposition which gnd Wk = .QﬂkL /.N' Here the ;ynthe5|s wmdom(n)
represents a signal in terms of time and frequency trans-> @ periodic version byv of a time-scaled Gabor win-

. 4 . ) X ) _ 9i/2 f o B .
lated basis functions [4]. Gabor basis functions are obtalneddhoW aSgE)(”) . 2 q 9(2 ")’dl _do’Gl’k')”’I 1 [4] I'is
by shifting and modulating with a sinusoid a single win- the number of windows used and Gabor expansion param-

| o .
dow function, which results in a fixed and rectangular TF etersM, K, L, andL’ are positive integers constrained by

— [ -
plane tiling. However, many of the practical signals such M_L =KL — N. where) and K are the ““T”ber of anal
as speech, music, biological, and seismic signals have timeYS!S samples in time and frequency, respectively. The Gabor

varying frequency nature that is not appropriate for this type coefficients can be calculated by

where the basis functions are

of analysis [5, 6]. Thus the Gabor expansion of such signals N-1

will require large number of coefficients yielding a poor TF Aim k= Z z(n) 55 .k (N) 3)
localization [7, 8]. Therefore, the ES estimate we obtain n=0

by using the Gabor expansion suffers from a TF resolution j 2mk

s whered; ,m x(n) = Ji(n —mL) e2"x ™ and4,;(n) anal-
problem. Here we present an ES analysis method based 0fgis window is solved from the biorthogonality condition
a new, fractional Gabor expansion that uses a more flexible peryeery, (n) ands; (n) [4]. Gabor basigF; ()} with
parallelogram-shaped TF lattice [9]. The basis functions of fjyeq window and sinusoidal modulation tiles the TF plane

*This work was supported by The Research Fund of The University of iN & reCtangmar fashiqn. Such methods !Jsua”y provide sig-
Istanbul, Project number: UDP-12/21062002. nal representations with poor TF resolution [5].
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2.2. Evolutionary Spectral Analysis

We obtain in [3] an evolutionary spectral estimate based on
the Gabor coefficients. We consider the following discrete-
time, discrete-frequency model for finite-extent, determin-

istic signals that is analogous to the Wold-Cramer represen-

tation of non-stationary random signals:

K-1
z(n) = A(n,wyg)e?E™
0

0<n<N-1, (4)

wherew;, = 27k /K, andA(n,wy) is a time-frequency ker-
nel. Comparing the two representationsiéf.) in (1) and
(4), we have that the kernel is

A(n,wg) @i m,k Gi(n —mL)

) E*J'wk[

(®)

where we substituted for the coefficieds; ,, »} and de-
fined the time-varying window

Yi (6 =mL)gi(n —mL).  (6)

Then the evolutionary spectrum ofn) is obtained by

SES(N,Wk) = ? |A(7’L,(A)k)‘2, (7)
where the factorl /K is used for proper energy normal-
ization. The above ES analysis method with a fixed, and

rectangular TF lattice yields a poor resolution. Several ap-

proaches have been proposed to improve the resolution of

such sinusoidal representations: some of them are averagin
estimates obtained using different windows [3], and max-
imizing energy concentration measures [5, 7]. In recent
works, representations on a non-rectangular TF grid has at
tracted a considerable attention [6, 9]. A non-rectangular
lattice is more appropriate for the TF analysis of signals
with time-varying frequency content.

3. DISCRETE FRACTIONAL GABOR EXPANSION
We define a discrete fractional multi-window Gabor expan-
sion forz(n), 0 <n < N — 1, as follows:

I-1M-1 K-1

z(n) = %Z Z Z im keya Gismik,a () (8)

i=0 m=0 k=0

wherea; ,, 1. o are the fractional Gabor coefficientsjs the
order of the fraction, and the basis functions are

gi,m,k,a(n) = gz(n - mL) Wa,k‘(n)

Here §;(n) is defined as above, arid, (n) is the frac-
tional kernel,

W, k(n) _ ej[fé(n2+(wk sin @)?) cot atwyn)

which is similar to the Fractional Fourier Series basis func-
tions presented in [10], and again, = 27k/K. Above
basis functions with this fractional kernel generate a par-
allelogram shaped TF sampling geometry. The expansion
in (8) reduces to the above sinusoidal Gabor expansion for
a = 7/2. The parameterd/, K, L, andL’, are same as

in the traditional Gabor expansion. For numerically stable
solutions we need that < K. The case wheré = K

is called the critical sampling, and the case where: K

is the oversampling. In our derivations, we always consider
the general, oversampled case. The Gabor coefficients can
be evaluated as before by

N—-1

Z T(n) :ﬁ,m,k,a (n)

n=0

where the analysis functions are

(9)

i m. ko =

’?i,m,k,a(n) = :/z(n - mL) Wa,k(n)
and#;(n) is periodic version of &;(n) that is solved from
a fractional biorthogonality condition between(n) and

¥i(n)-

To obtain the completeness condition for the fractional

Gabor basis for scalg substitute (9) in (8):
> (Z z(£)7; (£ = mlL) S,k(€)>
m=0 k=0 £=0

Gi(n — mL)Wy, 1(n)

N-1M-1K-1

> 3N G- mL)i; (- mL)

£=0 m=0 k=0

ej[—%(nQ —£?) cot atwy (n—~)]

M-1K-1 /N-1

a(n)

g

X

From the above equation, we obtain the completeness rela-

tion for basis{g; m k,«(n)} as

M-1K-1

SN Giln—mL)F; (£~ mL)el- b
m=0 k=0

2_12%) cot o]

x el “r(n=0) —= §(n — () (10)

The fractional biorthogonality condition that we need to solve
the analysis or dual function;(n) is obtained from the
above completeness relation using a discrete Poisson sum
formula as:

N-1 )

> G5 (n+mE)edtE (5, ()

n=0

. m?2K? L
XBJ(nm,K—‘,- 5t—)cota _ E SOk

0<m<L -1, 0<k<L-1 (11)
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Synthesis window g‘(n) p‘(az‘\) and pI(BO‘\) windows and their spectrograms
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Fig. 1. A Gauss synthesis window (top figure), and its Fig. 2. The time—varying chirp window used in ES for
biorthogonal windows in critical (middle) and oversampling n = 32 (top figure),n = 80 (middle) and their spectrogram
(bottom) cases. (bottom).

After replacing for the coefficients in (9) we have that
Completeness and biorthogonality conditions given in equa-
tions (10) and (11) reduce to the conditions in the tradi- _ 1 —juwrt
tional case [4] forw = /2. This indicates that the above Aln,wr) - = () I Z pi(n,0) e

fractional expansion is the generalization of the Gabor ex- 521071 =0
pansion. In Fig. 1, we show a Gauss windgwn),n = _ 1 Au(n,wn) (13)
0,1,---,127 on the top figure, and its biorthogongl(n) 1 ~ R

for two different set of sampling parameters obtained by
solving equation (11) forv = 7/4. The window in the  where we defined the time-varying, fractional- modulated
middle is obtained using = 16, K = 16 that is the criti- ~ window,
cal sampling. The window at the bottom is calculated with

L =8, K = 64 as an example of the oversampling. =

pi(n.0) = 3 Giln — mL)3; (£ — mL)el 37" ot

m=0

The equation in (13) can be interpreted as the average of
short-time Fourier transforms with scaled, time-dependent
4. FRACTIONAL EVOLUTIONARY SPECTRAL and non-sinusoidal modulated WindOMn, E) The frac-
ANALYSIS tional evolutionary spectrum is then obtained as before. Fur-
thermore, p(n, £) can be calculated independent of the sig-
nal and then the calculation of the ES can be achieved very

In this section we present a fractional evolutionary spectral efficiently using FFT. In Fig. 2, we show an example of
analysis method based on the above Gabor expansion. Her#is time-varying fractional window; (n, £) for o = 7 /4
we consider the discrete—time, and discrete—frequency repat time instants; = 32 andn = 80 and their spectrogram
resentation for:(n) given in equation (1). Comparing this ~ together.

with the fractional Gabor representation in (8), we get the

time—frequency kernel using windajy(n) as 5. EXPERIMENTAL RESULTS

We consider a signal composed of two crossing chirps -one
I—-1M-1

1 with increasing frequency and the other decreasing frequency-
An,wi) = 7 Z Z @i ko Gi(n —mL) with anglesr/4 and—7 /4 is considered. This signal is first
=0 m=0 , analyzed withoe = 7/4,L = 4, K = 128, andl = 4 and
x e dz(n*+(wisine)®)cota (12)  ES estimate is given in Fig. 3. Notice that increasing chirp
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is represented with higher TF localization since the fraction [9] Bastiaans, M.J., and van Leest, A.J., “From the Rect-
order matches this component. Then the ES is estimated

usinga = —m /4 fraction order and same sampling param-
eters and the result is given in Fig. 4. As shown from the

figures, the component that is matched by the fraction order[

is displayed in the TF plane with a high resolution.

Fourier Trasformation,"IEEE Signal Proc. Letters
Vol. 5, No. 8, pp. 203—205, 1998.

angular to the Quincunx Gabor Lattice via Fractional

10] Pei, S.C., Yeh, M.H., and Luo, T.L., “Fractional

Fourier Series Expansion for Finite Signals and Dual
Extension to Discrete—Time Fractional Fourier Trans-
form,” IEEE Trans. on Signal ProcMol. 47, No. 10,
pp. 2883-2888, Oct. 1999.

6. CONCLUSIONS

In this paper, we present a method for fractional evolution-
ary spectral analysis of discrete-time, non- stationary sig-
nals. The evolutionary kernel is obtained via the coefficients
of a fractional Gabor expansion. We give the completeness
and biorthogonality conditions of this new expansion. Sim-
ulations show that the fractional method gives high resolu-
tion ES results if the analysis fraction order match the fre-
guency content of the signal. Hence, for an arbitrary sig-
nal, the fraction orderx can be chosen from a set of val-
ues{as,aq, -+ ,a,} by maximizing a concentration crite-
ria similar to the method used in [5, 7].

Fractional Evolutionary Spectrum for o= 14
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