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ABSTRACT
This paper addresses the problem of time-varying amplitude multi-
chirp signals parameters estimation. We compare two approaches
which require a model for the amplitude. First, we use a basis
of time-localized functions associated with Bayesian estimation.
Secondly, we use an autoregressive model associated with a mixed
high-order ambiguity function/Kalman filter estimation. Results
show that both methods are efficient to solve this estimation prob-
lem.

1. INTRODUCTION

Chirps are one of the most studied class of signals, as they ap-
pear in numerous applications such as sonar, radar, acoustics, etc.
However, authors generally consider monochirp signals (i.e., sig-
nals with one chirp component at a given time), and the chirps
amplitude is almost always assumed stationary.

In this paper, we address the general problem of multichirp
signals, each chirp component having a time-varying amplitude.
Our model is more realistic than the previous simple cases. More
precisely, the signal model considered here is, for� � �� � � � � � :
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where� is the discrete time index,� is the total number of chirps,
������������ �� , are time-varying amplitudes,��������� �� are ini-
tial phases,�	������� �� are initial frequencies and�
������� �� are
chirp slopes. The additive noise� is assumed zero-mean white
Gaussian with variance
�. In particular, an example application
in which such signals arise can be found in [1] (loudspeakers fault
detection).

The set of parameters defining this model is large, and practi-
cal estimation requires a time-varying amplitudes
������������ �� model to be defined. We address two different
models, each associated with a dedicated algorithm. The first model
consists of projecting������������ �� on a basis of time-localized
functions, and Bayes estimation is performed using MCMC. The
second model relies on an autoregressive modelling of amplitudes
time evolution, and is implemented with a mixed high-order ambi-
guity function estimator / Kalman filter.

This paper is organised as follows. In Section 2, the model
relying on a set of basis functions (referred to asprojected am-
plitudes model) is described, and the estimation algorithm is sum-
marised. In Section 3, the model relying on autoregressive ampli-
tudes modelling (referred to asautoregressive amplitudes model)

is presented and the estimation algorithm is outlined. Section 4
provides simulation results and compares the two models. We con-
clude about the good qualities and drawbacks of both methods.

2. PROJECTED AMPLITUDES MODEL

In this section, we present a model in which the time-varying am-
plitudes are projected on a set of� 	 � basis functions, denoted
�����, � � �� � � � � � :
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where��� denotes the amplitude coefficient corresponding to basis
function �����. For a given�, ����� is obtained by translating a
mother basis function���� so that����� is centered around time
��� with �� � ���

�
. More precisely,

����� � ���� ���� (3)

In practice,���� is selected as a smooth, non-oscillating unitary
energy function such as a cubic spline, a Hanning window, etc.
Using Eq.’s (1)-(2), one has
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with ��	�� � ��� ������� et��
�� � ���� �
����� (this new param-
eterisation is useful for MCMC simulations, and is often adopted
in similar contexts [2, 3]). Decomposition of time-varying ampli-
tudes on a set of basis functions is often a good solution within
a Bayesian framework, see [3] for another application. In vector-
matrix form, Eq. (4) becomes:

� � ��	� (5)

where� �
�
����� � � � � ����

��
is the signal vector. Similarly,�

denotes the noise vector and� is the vector obtained by stacking
the amplitudes, and� is a matrix whose columns contain mod-
ulated basis functions (terms����� ����
� 	� � 	 � 
� �

�� and
����� �
��
� 	� � 	 � 
� �

�� for all � � �� � � � � � ), see, e.g.,
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[2] for a similar setting. The likelihood of� is:
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where� � �
�� � � � � 
� �� and� � �	�� � � � � 	� �� .
We now endow this model with Bayesian assumptions. The

posterior distribution of the multichirp signal parameters is given
by

���� �� � � 
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where we assume the following hierarchical structure for the prior
distribution
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Here, we propose to select vague priors but other choices could be
implemented, depending on the amount of prior information avail-
able. Frequencies (resp. slope parameters) are assumed indepen-
dent, uniformly distributed between� and���, i.e. � � �

�
�� ���

�
(resp. � � �

�
�� �����

�
1). The noise variance is distributed ac-

cording to a inverse gamma distribution (conjugate prior)
� �
�	��� ��. The amplitude parameter� is zero-mean Gaussian with
covariance matrix
���. Note that the covariance matrix is scaled
by the noise variance. An efficient choice for���� is �

Æ�
���,

known as the�-prior distribution [4, 2]. Standard calculations lead
to:
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with ��� � �
�
�	���� and��������� � � if � � � � � and

� otherwise.�� is the identity matrix of size� . Moreover,
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The three hyperparameters�, � andÆ� are selected such that
� � � � � andÆ� � �	��Æ � �Æ�. The estimation of the chirps
parameters�, � , �, 
� is done through the MMSE estimate, e.g.,
for the amplitudes
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which is well approached by the Monte Carlo approximation

	� 

�

�

��
���

��	�� (13)

This requires to have samples��	��� � 	��� �	��� 
� 	���, � �
�� � � � �� distributed according to���� � � �� 
��. The algorithm

1Here, we assume positive slopes, but this choice is indicative, and ex-
tensions to other minimum/maximum bounds are still possible.

aimed at generating such samples (MCMC algorithm) is very sim-
ilar to the well described sampler in [2]. For the sake of brevity,
we have not presented here the case where the number� of chirps
is unknown, but provided a prior on� is defined, its estimation is
straightforward (using reversible jump MCMC).

3. AUTOREGRESSIVE AMPLITUDES MODEL

The second time-varying chirps amplitudes model relies on a first
order autoregressive modelling of the amplitudes, namely, for all
� � �� � � � � �:

����	 �� � ����� 	 ���� (14)

We adopt here a completely different estimation approach. No
Bayes assumptions are taken, and we rather rely on an estimation
method specially designed for polynomial phase signals (chirps
are order 2 polynomial phase signals). We first assume that the sig-
nals are monocomponent, i.e., signals are made of only one chirp
(this assumption will be relaxed later in this paper). The method
we start from is based on the high-order ambiguity function (HAF)
introduced by Peleg [5]. In order to estimate the amplitudes of
each component, we associate it to a Kalman filter.

The high-order ambiguity function of a complex-valued signal
� is the Fourier Transform (FT) of the operator D�� , see [5] for
a complete definition. The main interest of this function is sum-
marised in the following property.

Let � be a complex-valued polynomial phase signal such that
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, then:

D�������� �� � ��� ��
��������	 ������� (15)

where � is time and � is time-lag, and

����� �  � ������ (16)

����� � � � ��� �������� � ���� � �� � ���� (17)

and its FT is the order  ambiguity function of �.
In practice, this property provides an efficient way to estimate

the highest order phase coefficient��� , because a peak appears in
the HAF at the frequency��� . In order to estimate lower order
coefficients��� � � � � ����, the following algorithm can be imple-
mented:
Algorithm 1

1. Initialisation

� Set!�  and set"���� ����

2. Polynomial phase coefficients estimation

� while ! � �, do

– Choose�

– Estimate��� by computing the FT of D���"���� ��

– Demodulate "��� with ����������
��, i.e. set

"���� "��� ��������� �
��

– set!� !� �

In presence of additive noise, the estimation is accurate up to a
moderate SNR [5], and remains computationally cheap. Moreover,
this estimation technique is robust to slowly time-varying ampli-
tudes.

VI - 658

➡ ➡



Once the frequency and slope parameters are known, a Kalman
filter is implemented so as to estimate the time-varying ampli-
tudes, see [6] for more details. Note that the initial phase can
be estimated at this step by considering complex valued ampli-
tudes#���� � ����� ��������. In Algorithm 1, the last iteration
provides the initial frequency parameter, and the remaining de-
modulated signal is an estimate�#���� of #����. One could simply
consider�#���� as a good amplitudes estimate, but we can refine it
by implementing the Kalman filter on the model:

#��� 	 �� � #���� 	 ���� (18)

���� �
�
������
� �	��	 ��
��

��
�
#���� 	 ���� (19)

where� and� are zero-mean white Gaussian noises of variances$
and
�. Eq. (18) is the evolution equation whereas Eq. (19) is the
observation equation2. In practice, a forward-backward-forward
filter is implemented.

We now address the case of multichirp signals. If���� con-
tains multiple components of order , its HAF has several peaks:
some have high energy and correspond to real chirp components
and others have small energy, and correspond to cross terms. Peaks
are considered one at a time in a hierarchical order, from the high-
est energy peak to the lowest energy peak. For each peak, Al-
gorithm 1 is implemented as if there were only one chirp. Once
parameters
� and 	� are estimated for this chirp, the previous
forward-backward-forward Kalman filter is implemented so as to
estimate the time-varying chirp amplitude. Then, the fully esti-
mated chirp component is subtracted from����, and the procedure
is iterated. It ends whenever no HAF peak has a significant energy.
This procedure, introduced in [5], is accurate for polynomial phase
coefficients estimation.

Similar to the monochirps case, a second Kalman filtering step
is now implemented in order to refine amplitudes estimates. In
matrix-form, the full model is:

��� 	 �� � � 		��� (20)

���� � %���� ���������� 	 ���� (21)

where���� �
�
#����� � � � � #� ���

�
. The covariance matrix of

	 is $�� and� has variance
�.

4. SIMULATION RESULTS

In this section, we apply the two previous methods to the estima-
tion of a multichirp signal embedded in a Gaussian white noise.
We select� � � chirps, whose phase parameters are listed in ta-
ble 1. The time-varying amplitudes are generated with a Wiener
smoothed filter with� � ��
, and various SNRs (i.e., various
�)
are tested.

For the projected amplitudes model, we choose� 	 � � �
basis functions, and 10000 MCMC runs are performed. For the
autoregressive amplitudes model, the HAF is only computed for
time-lag � � �� which is shown to be optimal [5]. The vari-
ance$ for the Kalman filter is$ � ����.

In Fig. 1, the amplitudes estimation results for both models
and each chirp component are displayed for SNR = 20dB. Both
methods yield accurate estimates. However, estimates obtained
with the autoregressive amplitudes model are more accurate than

2In practice,�� is tuned so as to yield satisfactory results.

Initial Initial
Slopes

phases frequencies
0 0.00090703 5.9688����

��2 0.031467 1.1871����

� 0.092246 2.3608����

2��3 0.21312 4.6952����

Table 1. Phase parameters of the four components of the test sig-
nals.

estimates obtained with the projected amplitudes model. More-
over, the Bayesian computations (MCMC) are more difficult to
handle than the high-order ambiguity function/Kalman filter based
approach.
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Fig. 1. Estimation of the time-varying amplitudes of the four com-
ponents with the projected amplitudes model (dashed lines) and
the autoregressive model (dotted lines). The true amplitudes are
also plotted for comparison (solid lines).

We now apply both estimation algorithms to 50 signals with
the phase parameters given in Tab. 1 and three different SNRs (20,
10 and 0dB)3. The phase parameters estimates are listed in Tab. 2
together with standard deviations. For the amplitudes, we provide
the mean-square deviation between the true time-varying ampli-
tude and the estimated amplitude.

Interestingly, both methods provide accurate estimates of the
slope and of the initial frequency, and poor estimates of the initial
phase. The lower the SNR, the lower the accuracy of both methods
(as expected). However, the Bayesian model yields better slopes
and initial frequency estimates around SNR=0dB. Nevertheless,
the estimation accuracy of the amplitude is always better with the

3The 50 signals differ from the noise realization.

VI - 659

➡ ➡



Bayesian HAF
20 10 0 20 10 0

Slopes (
����)

� 0.586 (0.0119) 0.580 (0.0238) 0.506 (0.0397) 0.585 (0.0010) 0.586 (0.0027) 0.669 (0.4103)

� 1.188 (0.0087) 1.193 (0.0195) 1.188 (0.0470) 1.186 (0.0068) 1.176 (0.0112) 1.160 (0.3362)


 2.366 (0.0064) 2.367 (0.0178) 2.363 (0.0483) 2.341 (0.0035) 2.344 (0.0114) 2.245 (0.8142)

� 4.704 (0.0098) 4.699 (0.0209) 4.703 (0.0343) 4.700 (0.0052) 4.705 (0.0075) 4.703 (0.0139)

Initial Frequencies(
����)
	� 0.013 (0.0040) 0.016 (0.0062) 0.0271 (0.0097) 0.013 (0.0002) 0.013 (0.0006) 0.005 (0.0405)
	� 0.315 (0.0027) 0.314 (0.0068) 0.3146 (0.0147) 0.317 (0.0016) 0.32 (0.0027) 0.315 (0.0873)
	
 0.922 (0.0019) 0.922 (0.0051) 0.9239 (0.0120) 0.932 (0.0010) 0.931 (0.0031) 0.932 (0.0468)
	� 2.131 (0.0026) 2.133 (0.0052) 2.1314 (0.0107) 2.132 (0.0018) 2.131 (0.0026) 2.131 (0.0039)

Initial Phases
�� -0.06 (0.9125) -0.199 (0.8776) -0.541 (0.8343) -0.299 (0.0116) -0.298 (0.0323) -0.173 (1.4205)
�� 1.7 (1.1504) 1.811 (1.0730) 1.658 (0.8737) 1.21 (0.0724) 1.094 (0.1329) 1.328 (1.4807)
�
 3.27 (0.9084) 2.942 (0.8776) 2.601 (0.8343) 2.2 (0.0599) 2.421 (0.8567) 3.799 (2.5399)
�� 2.516 (0.6847) 2.503 (0.6920) 2.412 (0.7434) 2.028 (0.1509) 2.171 (0.2139) 2.096 (0.3178)

Amplitudes
�� 2.1531 1.5419 1.0047 0.3529���
 0.0014 0.0159
�� 1.6531 1.8579 1.7390 0.2550���
 0.0013 0.0241
�
 2.2222 1.9460 1.9555 0.2851���
 0.0016 0.0284
�� 1.3455 1.4933 1.4555 0.2009���
 0.0014 0.0151

Table 2. Mean of the phase parameters estimation and, in brackets, their standard deviation. Mean-square deviation between the true
time-varying amplitude and the estimated amplitude. It focus on 50 signals for each signal-to-noise ratio (20, 10 and 0dB).

HAF/Kalman filter based method.

Finally, we note that the computational cost is dramatically
higher for the Bayesian model, and computations were 2093 times
longer with MCMC than with HAF/Kalman filter.

5. CONCLUSION

In this paper, we have developed two methods for the estimation
of the chirp phase parameters of multichirp signals as well as their
time-varying amplitudes. Simulation results show that Bayesian
inference is accurate for the estimation of the phase parameters.
Nevertheless, at high SNR (20 dB), the HAF/Kalman filter based
method also yields accurate estimates. Furthermore, this latter
method is also more accurate for amplitudes estimation, whatever
the SNR. Note that our estimation methods can easily be extended
to higher-order polynomial phase signals. Further investigations
have shown that these time-varying amplitudes estimates could be
efficiently used for signal classification (in the problem of loud-
speaker fault detection [1]). This extends the work in [7] where
chirps were classified from their phase parameters.
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