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ABSTRACT is presented and the estimation algorithm is outlined. Section 4
This paper addresses the problem of time-varying amplitude multi- provides simulation results and compares the two models. We con-
chirp signals parameters estimation. We compare two approacheslude about the good qualities and drawbacks of both methods.
which require a model for the amplitude. First, we use a basis
of time-localized functions associated with Bayesian estimation.
Secondly, we use an autoregressive model associated with a mixed
high-order ambiguity function/Kalman filter estimation. Results

show that both methods are efficient to solve this estimation prob- In_thls section, we present a model in Wh".:h the time-varying am-
lem. plitudes are projected on a set bf+ 1 basis functions, denoted

¢in],n=1,... ,N:

2. PROJECTED AMPLITUDESMODEL

1. INTRODUCTION L
!
ai|n| = a n 2
Chirps are one of the most studied class of signals, as they ap- e[n] ; ko] @
pear in numerous applications such as sonar, radar, acoustics, etc.

However, authors generally consider monochirp signals (i.e., Sig-\herea!, denotes the amplitude coefficient corresponding to basis
nals with one chirp component at a given time), and the chirps fynction #i[n]. For a givenl, ¢[n] is obtained by translating a

amplitude is almost always assumed stationary. __ mother basis functiogp[n] so thatg,[n] is centered around time
In this paper, we address the general problem of multichirp ;A with A,, = X-L. More precisely,

signals, each chirp component having a time-varying amplitude. o
Our model is more realistic than the previous simple cases. More di[n] = ¢[n —IA,] 3)
precisely, the signal model considered here ispfet 1,... , N:

K In practice,¢[n] is selected as a smooth, non-oscillating unitary

z[n] = ax[n] cos(pr + 2w fin + mspn®) +wln] (1) energy function such as a cubic spline, a Hanning window, etc.
k=1 Using Eqg.’s (1)-(2), one has

wheren is the discrete time indedy is the total number of chirps, K 1L

{ax[n]}1,... k. are time-varying amplitudegspy }1.... . x are ini- B . 9

tial phases{ i }1.... x are initial frequencies anfk;. }1,... x are afn] = > [ack cos (2n fin+msen?)

chirp slopes. The additive noise is assumed zero-mean white

Gaussian with variance®. In particular, an example application

yeen

k=1 0
!

=
+ al i sin (27 frn + 7 sk n®) [di[n] + win]

in which such signals arise can be found in [1] (loudspeakers fault )
detection). o . . L _
The set of parameters defining this model is large, and practi-W'th acj = ay, cos(pr) etay , = —ay, sin(ypy) (this new param-

cal estimation requires a time-varying amplitudes eterisation is useful for MCMC simulations, and is often adopted
{ax[n]}1,....x model to be defined. We address two different in similar contexts [2, 3]). Deqomp_osition of time-varying ampli-_
models, each associated with a dedicated algorithm. The first moddHdes on a set of basis functions is often a good solution within
consists of projectindax[n]}1.....x on a basis of time-localized & Bayesian framework, see [3] for another application. In vector-
functions, and Bayes estimation is performed using MCMC. The Matrix form, Eq. (4) becomes:

second model relies on an autoregressive modelling of amplitudes

time evolution, and is implemented with a mixed high-order ambi- X=Da+W ©)
guity function estimator / Kalman filter.

This paper is organised as follows. In Section 2, the model whereX = [z[1],... ,m[n]]T is the signal vector. Similarly\W
relying on a set of basis functions (referred topasjected am- denotes the noise vector aads the vector obtained by stacking

plitudes model) is described, and the estimation algorithm is sum- the amplitudes, an® is a matrix whose columns contain mod-
marised. In Section 3, the model relying on autoregressive ampli-ulated basis functions (termg[n] cos(27 fxr n + 7 sx n®) and
tudes modelling (referred to asitoregressive amplitudes model) i[n]sin(27 frn + wspn®) forall n = 1,...,N), see, e.g.,
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[2] for a similar setting. The likelihood oX is: aimed at generating such samples (MCMC algorithm) is very sim-
ilar to the well described sampler in [2]. For the sake of brevity,
(X-Da)'(X-D a)] we have not presented here the case where the nullbéchirps
202 is unknown, but provided a prior of is defined, its estimation is
(6) straightforward (using reversible jump MCMC).

p(Xla,s, f,0%) = (210%) 2 exp[—

wheres = [s1,... ,sx|” andf = [f1,..., fx]".
We now endow this model with Bayesian assumptions. The 3. AUTOREGRESSIVE AMPLITUDESMODEL
osterior distribution of the multichirp signal parameters is given . ) . . . )
Ey psignalp g The second time-varying chirps amplitudes model relies on a first

order autoregressive modelling of the amplitudes, namely, for all
p(a7s7f702|x) KZ)(X|a7s7f70-2)p(a7s7f70'2)7 (7) k;: 1’ ’K

where we assume the following hierarchical structure for the prior ar[n+1] = ax[n] + v[n] (14)

distribution . L
We adopt here a completely different estimation approach. No

p(a,s,f,0%) x p(als, £,0?)p(s)p(£)p(c?). (8) Bayes assumptions are taken, and we rgther rely onan estimfation
method specially designed for polynomial phase signals (chirps
Here, we propose to select vague priors but other choices could bere order 2 polynomial phase signals). We first assume that the sig-
implemented, depending on the amount of prior information avail- nals are monocomponent, i.e., signals are made of only one chirp
able. Frequencies (resp. slope parameters) are assumed indepe(this assumption will be relaxed later in this paper). The method

dent, uniformly distributed betweenand0.5, i.e. f ~ 4]0, 0.5] we start from is based on the high-order ambiguity function (HAF)
(resp.s ~ U[0,0.5/N]"). The noise variance is distributed ac- introduced by Peleg [5]. In order to estimate the amplitudes of
cording to a inverse gamma distribution (conjugate prigr)~ each component, we associate it to a Kalman filter. _
ZG(a, B). The amplitude parameteris zero-mean Gaussian with 1 he high-order ambiguity function of a complex-valued signal
covariance matrixY,. Note that the covariance matrix is scaled IS the Fourier Transform (FT) of the operatoPR, see [S] for

by the noise variance. An efficient choice fBf ' is - D" D, a complete definition. The main interest of this function is sum-
known as they-prior distribution [4, 2]. Standard calculations lead Marised in the following property. .

to: Let = be a complex-valued polynomial phase signal such that

z[n] = exp [jQﬂ DN thh] , then:

K
1
o651 o T]Toos( e Gy DPu(2)[n,]] = expli2n(go(Dn+ ()] (15)
x [XT (Iv —DPTD”T) X +28] " = wheren istime and [ istime-lag, and
9
© do(l) = H!' 1" vy (16)

withP~! = DD +X;" andl, ,i(z) = 1if u < 2 < wvand _ yH=1 | H
0 otherwise I is the identity matrix of sizéV. Moreover, $1(1) = (H = DN" " wg = 0.5(H - DH  wn - (17)
T P and itsFT isthe order H ambiguity function of z.
p(02|f s)= 76 [a + N X (IN -DP'D )X +8 In practice, this property provides an efficient way to estimate
’ 2’ 2 the highest order phase coefficiént, because a peak appears in
the HAF at the frequencyy. In order to estimate lower order

(10) coefficientsvy, . .. ,vg—1, the following algorithm can be imple-
alf,s,0?) = N (u, 0 P) withy = PD” X 11) ~ Mented:
p(a| ) (n ) with (1) Algorithm 1
The three hyperparametess 5 andé® are selected such that o
a = =0andé? ~ ZG(as, B5). The estimation of the chirps 1. Initialisation
parameters, f, s, o2 is done through the MMSE estimate, e.g., e Seth + H and sety[n] <+ z[n]

for the amplitudes 2. Polynomial phase coefficients estimation

e whileh > 0, do
— Choosd
Estimatel, by computing the FT of I, (y)[n, {]

a= /ap(a,f,s,02|X) da df ds do> (12)

which is well approached by the Monte Carlo approximation

| M Demodulate y[n] with ehxp(—jﬁhnh), ie. set
am gy am (13) y[n] < y[n] exp(—jon n")
m=1 seth+ h—1

This requires to have samplda(™ £(™) (™) 52(™ m =

1,..., M distributed according tg(a, f, s, %). The algorithm In presence of additive noise, the estimation is accurate up to a

moderate SNR [5], and remains computationally cheap. Moreover,

1Here, we assume positive slopes, but this choice is indicative, and ex-this estimation technique is robust to slowly time-varying ampli-
tensions to other minimum/maximum bounds are still possible. tudes.
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Once the frequency and slope parameters are known, a Kalman Initial Initial
i L . ; ; . . Slopes
filter is implemented so as to estimate the time-varying ampli- phases| frequencies
tudes, see [6] for more details. Note that the initial phase can 0 0.00090703| 5.968810°°
be estimated at this step by considering complex valued ampli- w/2 0.031467 | 1.187110°*
tudesfr[n] = ar[n]expljer]. In Algorithm 1, the last iteration T 0.092246 | 2.3608104
provides the initial frequency parameter, and the remaining de- 2r/3 0.21312 | 4.695210°*

modulated signal is an estimatg[n] of 6;[n]. One could simply
considertx [n] as a good amplitudes estimate, but we can refine it Table 1. Phase parameters of the four components of the test sig-

by implementing the Kalman filter on the model: nals.
Ocln+1] = 6x[n] + v[n] (18)
. . ; . 2 estimates obtained with the projected amplitudes model. More-
oln] = [eXpU(%fk" + TSk )} Ox[n] + win] (19) over, the Bayesian computations (MCMC) are more difficult to

handle than the high-order ambiguity function/Kalman filter based

wherev andw are zero-mean white Gaussian noises of variagces
2 approach.

ando?. Eq. (18) is the evolution equation whereas Eq. (19) is the
observation equatién In practice, a forward-backward-forward
filter is implemented.

We now address the case of multichirp signalsz[i] con-
tains multiple components of ordéf, its HAF has several peaks:
some have high energy and correspond to real chirp components
and others have small energy, and correspond to cross terms. Peal
are considered one at a time in a hierarchical order, from the high- 0.5
est energy peak to the lowest energy peak. For each peak, Al-

0 a, 512

gorithm 1 is implemented as if there were only one chirp. Once 0 /V—/\/_/_—\\/
parameters;, and fi, are estimated for this chirp, the previous ol
forward-backward-forward Kalman filter is implemented so asto  *-1 \_._/—/'-/ - 1
estimate the time-varying chirp amplitude. Then, the fully esti-

mated chirp component is subtracted frefn], and the procedure 0. 60' a Tio

is iterated. It ends whenever no HAF peak has a significant energy. 2
This procedure, introduced in [5], is accurate for polynomial phase
coefficients estimation.

Similar to the monochirps case, a second Kalman filtering step 1- 5[ \,_\_/\//\/—N
is now implemented in order to refine amplitudes estimates. In T

matrix-form, the full model is: 1 :
(0] as 512
On+1 = 6+V[n (20) 15
zn] = C(5, F)[n)0[n] + wln] (21) 8 P R
where@[n] = [61[n], ... ,0x[n]]. The covariance matrix of
V is gIx andw has variance”. 0.50 - =

4. SIMULATION RESULTS . o . . .
Fig. 1. Estimation of the time-varying amplitudes of the four com-

In this section, we apply the two previous methods to the estima-Ponents with the projected amplitudes model (dashed lines) and
tion of a multichirp signal embedded in a Gaussian white noise. the autoregressive model (dotted lines). The true amplitudes are
We selectk’ = 4 chirps, whose phase parameters are listed in ta- @lS0 plotted for comparison (solid lines).
ble 1. The time-varying amplitudes are generated with a Wiener
smoothed filter withV = 512, and various SNRs (i.e., varioug) We now apply both estimation algorithms to 50 signals with
are tested. the phase parameters given in Tab. 1 and three different SNRs (20,
For the projected amplitudes model, we chodse- 1 = 8 10 and 0dB). The phase parameters estimates are listed in Tab. 2
basis functions, and 10000 MCMC runs are performed. For the together with standard deviations. For the amplitudes, we provide
autoregressive amplitudes model, the HAF is only computed for the mean-square deviation between the true time-varying ampli-
time-lagl = N/H which is shown to be optimal [5]. The vari- tude and the estimated amplitude.
anceq for the Kalman filter isy = 107°. Interestingly, both methods provide accurate estimates of the
slope and of the initial frequency, and poor estimates of the initial
In Fig. 1, the amplitudes estimation results for both models phase. The lower the SNR, the lower the accuracy of both methods
and each chirp component are displayed for SNR = 20dB. Both (as expected). However, the Bayesian model yields better slopes
methods yield accurate estimates. However, estimates obtainednd initial frequency estimates around SNR=0dB. Nevertheless,
with the autoregressive amplitudes model are more accurate tharthe estimation accuracy of the amplitude is always better with the

2In practice,o? is tuned so as to yield satisfactory results. 3The 50 signals differ from the noise realization.
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Bayesian HAF
20 10 | 0 20 10 0
Slopes 10~ %)
s1 | 0.586 (0.0119)| 0.580 (0.0238)| 0.506 (0.0397)| 0.585 (0.0010)| 0.586 (0.0027)| 0.669 (0.4103)
s2 | 1.188 (0.0087)| 1.193(0.0195)| 1.188 (0.0470)| 1.186 (0.0068)| 1.176 (0.0112)| 1.160 (0.3362)
s3 | 2.366 (0.0064)| 2.367 (0.0178)| 2.363(0.0483)| 2.341 (0.0035)| 2.344 (0.0114)| 2.245 (0.8142)
s4 | 4.704 (0.0098)| 4.699 (0.0209)| 4.703 (0.0343)| 4.700 (0.0052)| 4.705 (0.0075)| 4.703 (0.0139)
Initial Frequencies¢10~")
f1 | 0.013 (0.0040)| 0.016 (0.0062)| 0.0271 (0.0097) 0.013 (0.0002)| 0.013 (0.0006)| 0.005 (0.0405)
f2 | 0.315 (0.0027)| 0.314 (0.0068)| 0.3146 (0.0147) 0.317 (0.0016)| 0.32(0.0027)| 0.315 (0.0873)
fs | 0.922(0.0019)| 0.922 (0.0051)| 0.9239 (0.0120) 0.932 (0.0010)| 0.931 (0.0031)] 0.932 (0.0468)
fa | 2.131(0.0026)| 2.133(0.0052)| 2.1314 (0.0107) 2.132(0.0018)| 2.131 (0.0026)| 2.131 (0.0039)
Initial Phases
1 | -0.06 (0.9125)| -0.199 (0.8776)| -0.541 (0.8343)| -0.299 (0.0116)] -0.298 (0.0323) -0.173 (1.4205
P2 1.7 (1.1504) | 1.811(1.0730)| 1.658 (0.8737)| 1.21(0.0724) | 1.094 (0.1329)| 1.328 (1.4807)
w3 | 3.27(0.9084) | 2.942(0.8776)| 2.601(0.8343)| 2.2(0.0599) | 2.421(0.8567)| 3.799 (2.5399)
w4 | 2.516 (0.6847)| 2.503 (0.6920)| 2.412(0.7434)| 2.028 (0.1509)| 2.171 (0.2139)| 2.096 (0.3178)
Amplitudes
ax 2.1531 1.5419 1.0047 0.352910° 0.0014 0.0159
a2 1.6531 1.8579 1.7390 0.25501073 0.0013 0.0241
as 2.2222 1.9460 1.9555 0.28511073 0.0016 0.0284
a4 1.3455 1.4933 1.4555 0.2009103 0.0014 0.0151

Table 2. Mean of the phase parameters estimation and, in brackets, their standard deviation. Mean-square deviation between the true
time-varying amplitude and the estimated amplitude. It focus on 50 signals for each signal-to-noise ratio (20, 10 and 0dB).

HAF/Kalman filter based method. meeting (Bayesian Satistics 7), Oxford University Press, Ed.,
2002, to appear.
Finally, we note that the computational cost is dramatically [4]

higher for the Bayesian model, and computations were 2093 times4 A. Zellner, "On assessing prior distributions and bayesian re-
! ression analysis with-prior distributions,” Bayesian Infer-
longer with MCMC than with HAF/Kalman filter. 9 y b-p Y

ence and Decision Techniques, 1986.

[5] S. Peleg, Estimation and detection with discrete polynomial

5. CONCLUSION transform, Ph.D. thesis, University of California, Davis, 1993.

H. Cottereau, J.M. Piasco, and C. Doncarli, “Identification de
signaux multicomposant@sphase polynomiale atamplitude
variable,” in18° colloque GRETS sur le Traitement du Signal

et des Images, Toulouse, France, 10-13 septembre 2001.

In this paper, we have developed two methods for the estimation[6]
of the chirp phase parameters of multichirp signals as well as their
time-varying amplitudes. Simulation results show that Bayesian
inference is accurate for the estimation of the phase parameters.
Nevertheless, at high SNR (20 dB), the HAF/Kalman filter based 7]
method also yields accurate estimates. Furthermore, this latter
method is also more accurate for amplitudes estimation, whatever
the SNR. Note that our estimation methods can easily be extended
to higher-order polynomial phase signals. Further investigations
have shown that these time-varying amplitudes estimates could be
efficiently used for signal classification (in the problem of loud-
speaker fault detection [1]). This extends the work in [7] where
chirps were classified from their phase parameters.

M. Davy, C. Doncarli, and J.-Y. Tourneret, “Classification of
chirp signals using hierarchical bayesian learning and mcmc
methods,” IEEE Transactions on Sgnal Processing, vol. 50,

no. 2, pp. 377 —388, February 2002.
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