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ABSTRACT 
This paper proposes a new family of QR-based block LMS 

(QR-BLMS) algorithms for adaptive parameter estimation.  It 

extends the QR-based LMS (QR-LMS) algorithm by handling a 

block of data vectors at a time instead of one single input vector. 

Moreover, it is shown that when there is only one new input vector in 

the block and the others are obtained from previous time instants, 

this QR-BLMS algorithm yields a new QR-based implementation of 

the well-known affine projection algorithm (APA).  Simulation 

results for an acoustic echo canceller showed that the QR-BLMS and 

QR-APA algorithms perform better than the QR-LMS algorithm.   

1. INTRODUCTION 

Efficient recursive least squares (RLS) algorithms using the 

QR decomposition (QRD) is well known for their good numerical 

property [1]-[3], because the condition number of the system is 

much lower than that of the input correlation matrix. The 

QRD-based algorithms usually consist of the following two separate 

parts: 1) recursive updating of the triangular matrix and 2) 

backsolving of the filter parameters. Although the matrix-updating 

step can be efficiently performed with O arithmetic operations 

for single input adaptive filtering applications, the backsolving step 

still requires O operation. Here, N is the length of the adaptive 

transversal filter.  Therefore, in applications where the filter 

parameters have to be computed, the entire algorithm still 

requires  arithmetic operations. Recently, an approximate 

QR-based LS (A-QR-LS) fast adaptive parameter estimation 

algorithm with  complexity was proposed by Liu [4], where a 

special structured matrix is used to approximate the triangular matrix 

in the QRD.  Because of this structure, the triangularzation and 

backsolving steps can be combined together yielding an algorithm of 

O(N) arithmetic complexity.  Based on this algorithm, a similar 

QR-based least mean squares (QR-LMS) algorithm was proposed in 

[5]. The QR-LMS algorithm is mathematically equivalent to the 

optimum nonlinearly modified least mean squares (ONM-LMS) 

algorithm in an infinite precision environment. However, the use of 

Householder transform in solving for the filter parameters greatly 

improves numerical properties and convergence speed of the 

QR-LMS algorithm over the ONM-LMS algorithm.  The tracking 

performance of the QR-LMS algorithm for time-varying parameters 

is also significantly faster.  In this paper, we propose a new family of 

QR-based block LMS (QR-BLMS) adaptive parameter estimation 

algorithms that handle block instead of one vector at a time. This 

new algorithm has a faster convergence speed than the QR-LMS 

algorithm.  Moreover, we show that when there is only one new 

input vector in the block and the others are obtained from previous 

time instants, this QR-BLMS algorithm corresponds to a new 

QR-based implementation of the well-known affine projection 

algorithm.  Thanks to the Householder transformation, this QR-APA 

algorithm has better numerical property and convergence speed.  

The paper is organized as follows: the QR-LMS is briefly reviewed 

in Section 2.  The proposed QR-BLMS algorithm is described in 

Section 3.  Simulation results and comparison to other algorithms are 

given in Section 4.  Finally, conclusions are drawn in Section 5. 
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2. QR-BASED LMS ALGORITHM 

In this section, the QR-LMS [5] algorithm will be briefly 

reviewed. Consider the estimation of the N-dimensional parameter 

vector θ  for the following linear model  

)(nvd T
nn += θx , 

(1) 

where denotes matrix transpose, d  and  

 are the desired (observed) signal and input 

vectors, respectively, and v  is an additive white Gaussian noise 

sequence with zero mean. In the ONM-LMS algorithm, the weight 

update equation for the well-known LMS algorithm is 
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where θ  be the estimated parameter vector at time instant n,  n
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is the step size parameter, and  is a weighting factor. By 

substituting  in (3) into (2), we get 
nw

µ
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Equation (4) can be reorganized as follows 
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where I is an identity matrix, φ , and 

. Note, in deriving (5), the matrix inversion 

lemma has been used. Therefore, the OMN-LMS estimate of θ  is 

also the solution of the normal equation in (5).  This in turns is the 

least square (LS) solution of the following overdetermined equation 
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Let  and  be respectively the i-th elements of 

and , and β . Then, we can rewrite (6) as 
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Hence,  can also be obtained by solving eqn. (7).  Because of the 

special structure of the matrix on the left hand side of (7), it can be 

solved efficiently using the numerically more stable QRD such as 

Householder reflection or Givens rotation. The QR-LMS in [5] 

employs the Householder transformation and combines the updating 

of this matrix and the back-solving process together. The arithmetic 

complexity of the resulting algorithm is only O(N).   More recently, 

the authors have proposed an improvement QR-LMS algorithm 

using square-free Givens rotations [7].  More precisely, it was 

observed that the Givens rotation is more efficient than the 

Householder reflection if the input vector is processed one at a time.  

The arithmetic complexity can be reduced by a factor of two.  

Furthermore, the Givens rotation-based QR-LMS algorithm allows 

us to derive a square-root free version similar to the square-root free 

RLS algorithm of [9].  Simulation results in [5] and [7] showed that 

the QR-LMS has a better numerical accuracy and tracking speed 

than the OMN-LMS algorithm.  In the next section, we shall develop 

a new QR-based block LMS (QR-BLMS) algorithm with better 

convergence speed.   

nθ̂

3. QR-BASED BLOCK LMS 

In the QR-LMS algorithm, a new data vector is appended to 

the data matrix one at a time (eqn. 7). Here, we extend this algorithm 

to handle multiple new data vectors and/or more data vectors from 

previous time instants at each iteration. Under this situation, the 

QRD performed on the matrix in (7) resembles more closely the 

operations in the conventional QRD-based RLS algorithm for the 

given block of data input.  However, the triangular factor will be 

retained in the RLS algorithm, while the QR-BLMS algorithm only 

retains a structure similar to (7) so as to combine the triangularzation 

and backsolving processes together to yield an algorithm with O(N) 

complexity.  As the block dimension increases, the QRD operations 

in solving (7) can make better use of the data information to improve 

the convergence speed. This is very similar to the situation between 

the Affine Projection algorithm (APA) [8] and the LMS algorithm.  

In fact, we shall show that our QR-BLMS algorithm reduces to the 

normalized APA if the block only consists of one new input data 

vector, while the others are obtained from previous time instants.  

The resulting algorithm, which inherences the excellent numerical 

property of the Householder or Givens rotation, is called the 

QR-based APA (QR-APA) algorithm.  Without loss of generality, 

assume that L (>0) rows of new data are appended to the data matrix 

at a time. Then, equation (7) becomes 
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where , for , and    

.  (8) can also be rewritten as  
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To show that (8) and (9) actually corresponds to the normalized 

block LMS algorithm, we first note that the LS solution of (9) is 
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(11) is recognized as a normalized block LMS algorithm.  (11) can 

be shown to converge if 0<w<1.  However, due to page limitation, 

the mean convergence of (11) is omitted.  Like the QR-LMS 

algorithm, solving the equivalent system in (8) using the 

Householder-based QRD leads to better numerical properties. We 

call this algorithm the QR-BLMS algorithm.  When only one new 
data vector is being added to the data block X  while the other 

vectors in the block are obtained from previous time instants, (11) 

reduces to the well-known affine projection algorithm (APA). If its 

equivalent form in (8) is solved using Householder transformation, 

then we obtain a new QR-based APA algorithm, called QR-APA 

algorithm.  Like QR-BLMS, the QR-APA algorithm is expected to 

offer better numerical properties and fast tracking speed.  Since the 

derivation of the QR-APA is similar to that of QR-BLMS, only 

details for the latter will be given below.   Consider the matrix  in 

(8). It can be transformed into an upper triangular matrix using a 
series of Householder matrices  
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(13) to (15) yields the following recursive Househoulder 

triangularization algorithm: 
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jid ,  and  denote the element of the upper triangular matrix 

transformed from matrix D . Let ρ  

and π .  Then, by rewriting  in (16) as 
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So we can rewrite ρ .  Further, by 

defining , we get the desired 

QR-BLMS algorithm in Table 1.  The arithmetic 

complexity/iteration of this algorithm is O . Because the 

QR-BLMS is a block algorithm and it produces an output every L 

cycles, its complexity is O , as compared with O (  for the 

QR-APA, which performs similar operations every cycle.    Similar 

algorithm using Givens rotation can be derived. 
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4. EXPERIMENTAL RESULTS 

The performances of the various algorithms are evaluated using an 

acoustic echo cancellation problem. The input signal is an artificially 

generated speech signal, which is modeled as a 5-th order AR model 

characterized by poles at: , ,  and 

 . This AR model is driven by a white noise with 
21   ,5.0 zz = 3/

3 85.0 πjez ±= 4z

=5z 3/27.0 πje±
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zero mean and unit variance.  The acoustic path of the echo is 

modeled as a linear time invariant system using an exponentially 

weighted model of order 60.  The adaptive filters are assumed to 

have an order of 100, which is larger than the actual length of the 

acoustic path. The error norms for QR-BLMS, QR-APA and 

QR-LMS are shown in Fig. 1. Here the block size L is equal to two 

and three.  Fig. 1 shows the error norm of the parameters as a 

function of time and it is obtained by averaging over 100 Monte 

Carlo simulations.  It can be seen that as the block dimension 

increases, so does the convergence speed of the parameters and the 

QR-BLMS and QR-APA perform much better than QR-LMS.  Note, 

although the QR-BLMS is a block algorithm, its performance is very 

close to the QR-APA algorithm of L times more complexity. This 

substantiates the usefulness of the proposed methods. 

5. CONCLUSIONS 

A new family of QR-BLMS algorithms for adaptive parameter 

estimation is presented.  It extends the QR-LMS algorithm by 

handling a block of data vectors at a time instead of one single input 

vector. It is shown that when there is only one new input vector in the 

block and the others are obtained from previous time instants, this 

QR-BLMS algorithm yields a new QR-based implementation of the 

well-known affine projection algorithm (APA).  Simulation results 

for an acoustic echo canceller showed that the QR-BLMS and 

QR-APA perform much better than QR-LMS algorithm.   

6. REFERENCES 

[1] J. G. McWhirter, “Recursive least squares minimization using a systolic 

array,” in Proc. SPIE Int. Soc. Opt. Eng., vol. 431, 1983, pp. 105-112. 

[2] J. M. Cioffi, “A fast adaptive ROTOR’s RLS algorithm,” IEEE Trans. 

ASSP, vol. 38, 1990, pp. 631-653.  

[3] D. T. M. Slock and T. Kailath, “Numerically stable fast recursive least 

squares transversal filters,” Proc. IEEE ICASSP’1988, pp. 1369-1372. 

[4] Z. S. Liu, “QR methods of O(N) complexity in adaptive parameter 

estimation,” IEEE Trans. SP, vol. 43, 1995, pp. 720-729. 

[5] Z. S. Liu and J. Li, “A QR-based least mean squares algorithm for 

adaptive parameter estimation,” IEEE Trans. CAS-II, vol 45, 1998, pp. 

321-329. 

[6] M. Rupp, “Rursting in the LMA algorithm,” IEEE Trans. Signal 

Processing, vol. 43, pp. 2414–2417, Oct. 1995. 

[7] S. C. Chan and X. X. Yang, “Improved approximate QR-LS algorithms 

for adaptive filtering,” submitted to IEEE Trans. CAS-II, AUG. 2002. 

[8] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an 

orthogonal projection to an affine subspace and its properties,” 

Electronics and Communications in Japan, vol. 67-A, No. 5, 1984. 

[9] W. M. Gentleman and H. T. Kung, “ Matrix triangularization by systolic 

array,” in Proc. SPIE Int. Soc. Opt. Eng., 1981, vol. 298, pp. 298-303. 

)())((                

)ˆ((ˆ   

)(sign)(   
)(  ,   ,)(sign  ,   

/))()(sign(   ,/))()((   

|)|(   ,)(   

 ,,2,1 
1

lg  

)()(

111,

,

11

1111

2
1

2

0

ni

wwd

wnr
iww

iwii

wiw

LoopNiFor

orithmATriangularUpper

iTi
n

nniinnNi

inii

iniiiiiinniiii

ii
T

niniiinii

niiinini

dx

θθ

x
xxxI

x

n

+

−′−−=

−=
==′+==

⋅−=−=

+=+=

=
=

−−+

−−

−−−−

−

ηη

α
σπµσηηαηπρπ

σππδσππρ

αασπα

π

L

 

  
))())((                

)ˆ(()()(
)()(

1
)()1(

ni

wnn
iTi

n

nnii
ii

dx

θdd

+

−−= −
+ ηµ

                                           iLoopofEnd    
  orithmAgBacksolvin lg 
   1,)( ,0 +−== NNNN dnsγ

  

iLoopofEnd
nrnsi

dnsii
LoopNNiFor

nrnsN

iiin

iiNiinnii

iiNn

   
)()()(   

)(   ),1()1(   
 1,,2,1 

)()()(

,

1,1

,

=

−−=+++=
−−=

=

++

θ

γδθγγ

θ

x
L

       

Table 1. QR-BLMS Algorithm. 
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Fig. 1  Parameter Error Norm for QR-BLMS, QR-APA and QR-LMS 

(L=2,3).  w = 0.001.  
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