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ABSTRACT
This paper proposes a new family of QR-based block LMS
(QR-BLMS) algorithms for adaptive parameter estimation. It
extends the QR-based LMS (QR-LMS) algorithm by handling a
block of data vectors at a time instead of one single input vector.
Moreover, it is shown that when there is only one new input vector in
the block and the others are obtained from previous time instants,
this QR-BLMS algorithm yields a new QR-based implementation of
the well-known affine projection algorithm (APA). Simulation

results for an acoustic echo canceller showed that the QR-BLMS and

QR-APA algorithms perform better than the QR-LMS algorithm.
1. INTRODUCTION

Efficient recursive least squares (RLS) algorithms using the
QR decomposition (QRD) is well known for their good numerical
property [1]-[3], because the condition number of the system is
much lower than that of the input correlation matrix. The
QRD-based algorithms usually consist of the following two separate
parts: 1) recursive updating of the triangular matrix and 2)
backsolving of the filter parameters. Although the matrix-updating
step can be efficiently performed with O(N) arithmetic operations
for single input adaptive filtering applications, the backsolving step
still requires O(N?) operation. Here, N is the length of the adaptive
transversal filter.  Therefore, in applications where the filter
parameters have to be computed, the entire algorithm still
requires O(N?) arithmetic operations. Recently, an approximate
QR-based LS (A-QR-LS) fast adaptive parameter estimation
algorithm with O(N) complexity was proposed by Liu [4], where a
special structured matrix is used to approximate the triangular matrix
in the QRD. Because of this structure, the triangularzation and
backsolving steps can be combined together yielding an algorithm of
O(N) arithmetic complexity. Based on this algorithm, a similar
QR-based least mean squares (QR-LMS) algorithm was proposed in
[S]. The QR-LMS algorithm is mathematically equivalent to the
optimum nonlinearly modified least mean squares (ONM-LMS)

algorithm in an infinite precision environment. However, the use of
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Householder transform in solving for the filter parameters greatly
improves numerical properties and convergence speed of the
QR-LMS algorithm over the ONM-LMS algorithm. The tracking
performance of the QR-LMS algorithm for time-varying parameters
is also significantly faster. In this paper, we propose a new family of
QR-based block LMS (QR-BLMS) adaptive parameter estimation
algorithms that handle block instead of one vector at a time. This
new algorithm has a faster convergence speed than the QR-LMS
algorithm. Moreover, we show that when there is only one new
input vector in the block and the others are obtained from previous
time instants, this QR-BLMS algorithm corresponds to a new
QR-based implementation of the well-known affine projection
algorithm. Thanks to the Householder transformation, this QR-APA
algorithm has better numerical property and convergence speed.
The paper is organized as follows: the QR-LMS is briefly reviewed
in Section 2. The proposed QR-BLMS algorithm is described in
Section 3. Simulation results and comparison to other algorithms are

given in Section 4. Finally, conclusions are drawn in Section 5.
2. QR-BASED LMS ALGORITHM

In this section, the QR-LMS [5] algorithm will be briefly
reviewed. Consider the estimation of the N-dimensional parameter

vector @ for the following linear model

(M

d, = xfﬂ +v(n),

where ()"

[xn(l),xn(Z),...,x”(N)] are the desired (observed) signal and input

denotes matrix transpose, d, and x| =

n

vectors, respectively, and v(n) is an additive white Gaussian noise
sequence with zero mean. In the ONM-LMS algorithm, the weight
update equation for the well-known LMS algorithm is

0,=0,, +uld, - x (N6, 1x,(N), 2)

where 6 , be the estimated parameter vector at time instant 7,

i= 1/ +x]x,) (3)
is the step size parameter, and w, is a weighting factor. By

substituting p in (3) into (2), we get
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Equation (4) can be reorganized as follows
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where I is an NxN identity matrix, ¢, :[wnl xn]r , and

w’ a’n]r . Note, in deriving (5), the matrix inversion

n’ n—1

b, =

lemma has been used. Therefore, the OMN-LMS estimate of én is

also the solution of the normal equation in (5). This in turns is the
least square (LS) solution of the following overdetermined equation

90,%b,. (6)

Let OAH(Z') and x,(i/) be respectively the i-th elements of

HAIH andx,,and f, = Pnr l]r . Then, we can rewrite (6) as

w, -WMGAH ) |
W, 0 -wP,,(2)
0 : B~0. (7
w, - WMGAH (N)
x,() x,(2) - x,(N) -d,

Hence, én can also be obtained by solving eqn. (7). Because of the

special structure of the matrix on the left hand side of (7), it can be
solved efficiently using the numerically more stable QRD such as
Householder reflection or Givens rotation. The QR-LMS in [5]
employs the Householder transformation and combines the updating
of this matrix and the back-solving process together. The arithmetic
complexity of the resulting algorithm is only O(N). More recently,
the authors have proposed an improvement QR-LMS algorithm
using square-free Givens rotations [7]. More precisely, it was

observed that the Givens rotation is more efficient than the

Householder reflection if the input vector is processed one at a time.

The arithmetic complexity can be reduced by a factor of two.
Furthermore, the Givens rotation-based QR-LMS algorithm allows
us to derive a square-root free version similar to the square-root free
RLS algorithm of [9]. Simulation results in [5] and [7] showed that
the QR-LMS has a better numerical accuracy and tracking speed
than the OMN-LMS algorithm. In the next section, we shall develop
a new QR-based block LMS (QR-BLMS) algorithm with better

convergence speed.
3. QR-BASED BLOCK LMS

In the QR-LMS algorithm, a new data vector is appended to
the data matrix one at a time (eqn. 7). Here, we extend this algorithm
to handle multiple new data vectors and/or more data vectors from
previous time instants at each iteration. Under this situation, the
QRD performed on the matrix in (7) resembles more closely the
operations in the conventional QRD-based RLS algorithm for the
given block of data input. However, the triangular factor will be
retained in the RLS algorithm, while the QR-BLMS algorithm only
retains a structure similar to (7) so as to combine the triangularzation
and backsolving processes together to yield an algorithm with O(&)
complexity. As the block dimension increases, the QRD operations
in solving (7) can make better use of the data information to improve
the convergence speed. This is very similar to the situation between
the Affine Projection algorithm (APA) [8] and the LMS algorithm.
In fact, we shall show that our QR-BLMS algorithm reduces to the
normalized APA if the block only consists of one new input data
vector, while the others are obtained from previous time instants.
The resulting algorithm, which inherences the excellent numerical
property of the Householder or Givens rotation, is called the
QR-based APA (QR-APA) algorithm. Without loss of generality,
assume that L (>0) rows of new data are appended to the data matrix

at a time. Then, equation (7) becomes

W, w8, () ]
W, 0 -wh,,(2)
D-B,=| 0 5 B, =0 (8)
w, =9, (N)
x,() x,(2) -~ x,(N) -d(n)

where x, (k) =[x, (k),x, ,(k),--,x,_, ()], for k=12,---,N , and
d(n)=[d,.d,  ,-.d, _,.] . (8) canalso be rewritten as
@0, =c ©)

n n

where @ =[wI X,]°, cn:[wnéH )17, (10)
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and Xn = [xn (1)’xn(2)5" 55Xy (N)]T .
To show that (8) and (9) actually corresponds to the normalized
block LMS algorithm, we first note that the LS solution of (9) is

(@ @) ' c, . Further, using (10), one gets
én = (¢l{‘¢ﬂ )71 ¢ﬂc’7

W”I . Wéf
=iwI X 1 x,]""m
{[wn n]{ x;}} [v, n]{ d(ﬂ)}

=w, (- X, (XX, +W D) X)w0,, + X,d(n)) -
=0, — X, (X" X, +w)' X0, +w, X d(n)

-w’ X, (X'X,+w D' XX d(n)
=0, + X, (X/X, +w.D) ' d(m) - X]0,.).

(1)

(11) is recognized as a normalized block LMS algorithm. (11) can
be shown to converge if 0<w<1. However, due to page limitation,
the mean convergence of (11) is omitted. Like the QR-LMS
algorithm, solving the equivalent system in (8) using the
Householder-based QRD leads to better numerical properties. We
call this algorithm the QR-BLMS algorithm. When only one new
data vector is being added to the data block X, while the other
vectors in the block are obtained from previous time instants, (11)
reduces to the well-known affine projection algorithm (APA). If its
equivalent form in (8) is solved using Householder transformation,
then we obtain a new QR-based APA algorithm, called QR-APA
algorithm. Like QR-BLMS, the QR-APA algorithm is expected to
offer better numerical properties and fast tracking speed. Since the
derivation of the QR-APA is similar to that of QR-BLMS, only
details for the latter will be given below. Consider the matrix D, in
(8). It can be transformed into an upper triangular matrix using a
series of Householder matrices H, =H ,(N)H ,(N -1)---H (1)

(12)
where D =D, ,and D{"" is the desired upper triangular matrix;
H,(i) is a
H,)=1-u"@") /o,

D" (n)y=H,()HDY(n), i=12,-,N

symmetric and orthogonal

H,G) is

matrix given by

chosen such that
xU(i) =0, where x'*V(i) is the element of matrix D{*"(n)in

row N and column i. The corresponding parameters of H (i) are

on- 2 x|
given: o, =4/w, +||xn (l)" , 0, =0+ |w, )
wn +Sign(wn)ai :nx lf .1 :l
ul? =4 x (i) if j=N+1,
0 otherwise
i=12,--,N. (13)

Therefore, (12) can be rewritten as

D" (n) = D (n)~u"q] /5,

where qu = (”(i))TDJ(\f)(n) =[0,,0,7,,T ;01 Ty ]

(14

nw, +||xf7"’(i)||z if j=i
T, = (2@ % () if j=i+1,-,N (15)

nwd, )+ xO@) dO(n) if j=N+1

(13) to (15) yields the following recursive Househoulder
triangularization algorithm:

Fori=12,---,N Loop

. 2
o= v [ s o, =a@+lw, D

n, =w, +sign(w,)o,, M/ =n,/o,
K= xrlri)(i)/ci
1 () = —sign(ow, Yo,
d oy, =-w0,, -0 (w0,,)
+(x @) d" (n))
4 (n)=d" (n) =, 0, (-w,0,.,)
+(x@)"d” ()
For j=i+1,i+2,---,N Loop
d; ;=[x )" (i)
x ()(x (@)
c

i

(=~ )x," ()

End of Loop j

End of Loopi (16)

d,; and r,,(n) denote the element of the upper triangular matrix

transformed from matrix D, (n) . Let p, = I -x"@)(x (@) /o
1 .

and 7, = H p, - Then, by rewriting xU*P(j) in (16) as
j=i

x"(y=n.x,(j), j=i+Li+2,,N. 17
So we can rewrite p, =1I-n, x,()r, x,(@) /c,. Further, by
defining §, = —sign(w, )(x, x,(i)) ®, /o, , we get the desired
QR-BLMS Table 1. The
complexity/iteration of this algorithm is O (I’N) . Because the

algorithm  in arithmetic
QR-BLMS is a block algorithm and it produces an output every L
cycles, its complexity is O (LN) , as compared with O (L’N) for the
QR-APA, which performs similar operations every cycle. Similar
algorithm using Givens rotation can be derived.
4. EXPERIMENTAL RESULTS

The performances of the various algorithms are evaluated using an
acoustic echo cancellation problem. The input signal is an artificially
generated speech signal, which is modeled as a 5-th order AR model
characterized by poles at: z, =0.5, z, , z; =0.85¢*"” | z, and

z;= 0.7¢”**"° . This AR model is driven by a white noise with
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zero mean and unit variance. The acoustic path of the echo is
modeled as a linear time invariant system using an exponentially
weighted model of order 60. The adaptive filters are assumed to
have an order of 100, which is larger than the actual length of the
acoustic path. The error norms for QR-BLMS, QR-APA and
QR-LMS are shown in Fig. 1. Here the block size L is equal to two
and three. Fig. 1 shows the error norm of the parameters as a
function of time and it is obtained by averaging over 100 Monte
Carlo simulations. It can be seen that as the block dimension
increases, so does the convergence speed of the parameters and the
QR-BLMS and QR-APA perform much better than QR-LMS. Note,
although the QR-BLMS is a block algorithm, its performance is very
close to the QR-APA algorithm of L times more complexity. This

substantiates the usefulness of the proposed methods.
5. CONCLUSIONS

A new family of QR-BLMS algorithms for adaptive parameter
estimation is presented. It extends the QR-LMS algorithm by
handling a block of data vectors at a time instead of one single input
vector. It is shown that when there is only one new input vector in the
block and the others are obtained from previous time instants, this
QR-BLMS algorithm yields a new QR-based implementation of the
well-known affine projection algorithm (APA). Simulation results

for an acoustic echo canceller showed that the QR-BLMS and
QR-APA perform much better than QR-LMS algorithm.
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Upper Triangular Algorithm
Ty =1
Fori=12,---,N Loop

2 NI
o =Wl X, O o, =at | w, )

p,=I-n,_x,0)r, x,0)/c, & =-sign(w,)=r,x,0) =, /c,
T,= P, M, =w, Fsign(w, e, n)=n,/c,, 1, =n,_x,0)/o,
11,4 (n) = —sign(w, o,
d, o ==w,0,,~n,(-w,0,.)
+x0) " ()
4“0 () =d" (- p,0,(-w,0,.)
+(x ()" d? (n))
End of Loopi
Backsolving Algorithm
Yy =0,5y(m)=—dy .,
0,(N)=sy(m)/r, (n)
Fori=N—-1,N—-2,---,1 Loop
Yi=Yin +x,G+10,G+1), s;(n)=-d, y,, —8y,
0,()=s.(m/r,,(n)
End of Loopi

Table 1. QR-BLMS Algorithm.
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Fig. 1 Parameter Error Norm for QR-BLMS, QR-APA and QR-LMS
(L=2,3). w=0.001.
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