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ABSTRACT

We introduce a reduced-detail paradigm for nonstationary statistical
signal processing with enhanced performance. Time-frequency lo-
calized subspace signal components (called robustons) are used as
atomic entities for statistical signal modeling and processing. Ro-
buston signal processing employs special time-varying filters that
allow an efficient on-line implementation, and statistical signal de-
scriptors that can be estimated in a stable manner by means of intra-
subspace averaging. We develop the principles of robuston signal
processing and consider optimal nonstationary signal estimation as
a specific application. The performance advantages of the resulting
“robuston Wiener filters” are assessed by means of simulations.

1. INTRODUCTION

A statistical signal model or a method for statistical signal process-
ing is of little practical value if it is so detailed that the parameters
involved cannot be estimated with sufficient accuracy. This is es-
pecially true in nonstationary environments where averaging over
longer time periods cannot be used.

In this paper, therefore, we propose a reduced-detail paradigm
for nonstationary statistical signal processing with improved statis-
tical stability. Signals are decomposed into time-frequency local-
ized subspace components (termed robustons), and each robuston is
considered as an atomic entity for statistical signal modeling and
processing. Also, not all statistical dependencies between different
robustons are taken into account. The relevant second-order statis-
tics can be estimated by means of intra-subspace averaging, which
results in signal processing methods with enhanced statistical ro-
bustness. In fact, this robuston paradigm generalizes a previously
proposed scheme that is robust in a minimax sense [1, 2].

The paper is organized as follows. After a review of the robuston
subspace decomposition [1,2] in this section, Section 2 proposes ro-
buston filters that are the workhorse of robuston signal processing.
The statistical signal descriptors (robuston correlations) used and
their stable estimation are discussed in Section 3. Section 4 presents
a corresponding statistical signal model (robuston processes). Fi-
nally, Section 5 develops the application of robuston signal process-
ing to optimal nonstationary signal estimation (Wiener filtering) and
assesses the performance advantages of robuston Wiener filters.

Robuston decomposition. We use a decomposition of a discrete-
time signal x[n] into subspace components (robustons) x,  [n],

X[ = % z X1 [n] (€N
|_

where k is a time index and | is a frequency index [1,2]. Each ro-
buston x, , [n] lies in a P-dimensional linear signal subspace 2, | =
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Figure 1: Time-frequency localization of the signal subspaces 2| .
with 27 ; blown up into its LCB functions (subspace dimension P =
4 assumed). Only positive frequencies are shown.

span{u }p 0....p_1 that is spanned by the following P local co-
sine ba5|s (LCB) functions [3,4]:

@ = |/ 2 cos( PRI 1) win- kv,

withk € Z, 1 € [0,L—1], and p € [0,P —1]. Here, N = LP is the
block length and wi[n] is a suitably chosen window with effective
time duration N [3,4]. As shown in Fig. 1, the robuston decompo-
sition corresponds to a uniform tiling of the time-frequency plane.
Specifically, 2 |—and, thus, the robuston x, | [n] € 2, ,—is effec-

tively localized within the time interval (block) [kN, (k +1)N] and
the frequency band [, IZUP]. The LCB functions u|<( )[n] form
an orthonormal basis of 12(Z), and thus {%kl}keZIG[OL 1 is an
orthogonal partition of 12(Z). The robustons can be calculated as

Xk [n] = Pk X)) =

z aé uP & @)
where

o Fl)) — <X,U(p)> —

&= uf) = 3 A,
and Pkl denotes the orthogonal projection operator on %kl We

notethatu(p) = ffl)[n mN] and hence x, [n—mN] € 2, .

2. ROBUSTON FILTERS

Definition and expressions. Robuston filters (RFs) are the work-
horse of robuston signal processing. An RF H is a linear, time-
varying filter that relates the robustons x,  [n] of the filter input x[n]

and the robustons y, | [n] of the filter output y[n] = (Hx)[n] as
k+M,
Yia[n = Z Mgt X [N— (K—K')N]. @)
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That is, y, | [n] is a weighted sum of the (suitably time-shifted) x| [n]
located in the same (Ith) frequency band—thus, there is no “cross
talk” between different frequency bands—and within a local neigh-
borhood k” € [k —M,,k+ M,] of the current (kth) block. The filter
coefficient h, K descrrbes the mapping of x| [n] to y, | [n]. The fil-
ter length is given by M; + M, + 1. Note that an RF processes each
robuston as an entity, wrthout dlstlngwshrng between the individual
LCB components within the robuston.

Usingy[n] = 3§ ¥ Yy, [N and X1 [N = (P x)[n], the input-
output relation of the RF H defined by (3) is obtained as

o L-1[ ki+M,
(Hx)[n] = Pk (P X
k,_oo|% k’—g Kl Tl

Introducing the block time-shift operator Sy as (Smx)[n] = x[n—
mN], we can write the RF operator as

x)[n —(k—k')N]] .

o L-1 k+M,
H= Z %ka with Hk.l = g hk.k’;lsk—k’Pk’.I' 4)
K=o IS Tok=fowm,

The component system H, | is associated to ﬁt”kl inthat (H, ;x)[n] =
Vi, [n] € 2 (cf. (3). Because of (2) and ulP)  [n] = u(P >[nme]
the elementary systems S, _,,P,,, can be expressed as !

xul). ©)

(Sk—k Py , with ari,’rj) =

P—1
Ol = 3 i
2,0

For M; = M, =0, we obtain H, | = h, ., P,|, and thus the RF
reduces to the weighted sum of projectors [1,2]

o L-1
H= Z}hkklPkl for M;=M, =0.
k=—o0 |

Implementation and complexity. RFs allow an efficient on-line
implementation. For the kth block of length N, this implementation
consists of the following three steps:
1. LCB analysis: Calculation of a(P) — (x,ul((ﬁ”).
“ ”. (p)
Subband filtering™: Calculation of zk, KoM, ke A

3. LCB synthesis: Calculation of y, [n] = ZrL Olzp : kl '((F?[ I.

Using efficient discrete cosine transform algorithms for the LCB
analysis and synthesis steps [3,4], the computational complexity of
this implementation is ﬁ(N (21log,N+M; + Mz)) per signal block
and thus ©(2log, N 4-M; +M,) per output signal sample. Another
practically attractive feature of RFs is that they allow easy control of
the physically important parameters time and frequency. This is due
to the time-frequency localization of the subspaces 2y (cf. Fig. 1).

Properties. Some theoretical properties of RFs are summarized in
the following. For notational convenience, we will use the coeffi-
cient matrices H, defined as [H, ], ,, = hy ;-

P,: The identity operator I is an RF with coefficients hkk, | = 6kk,
or equivalently H, = 1 (the identity matrix) for all I.

P,: The adjoint H™ of an RF H is an RF with coefficients hy ., or
H (H denotes Hermitian matrix transpose).

P5: A weighted sum (weighted parallel connection) H = aH® 4+
bH® of two RFs HY and H® is an RF with coefﬁuents

Mk 7ah|((|2, +bhf(|2, or H, :aﬂ?l)_‘_bHEZ)

P,: The composition (series connectlon) H=H®@H® of two RFs
is an RF with hy ., —ZK kKl ( )  or H, fH(2>H< )

. If the inverse H~1 of an RF H eX|sts itisan RF W|th coefﬂuent
matrlces HL

3. ROBUSTON CORRELATIONS

Definition. Robuston processing is based on a reduced-detail de-
scription of the second-order signal statistics. For a zero-mean,
nonstationary random process x[n], the LCB expansion coefficients

aliFl’) = (x,uf(ﬁ)) are zero-mean random variables. A complete de-
scription of the second-order statistics of x[n] would generally in-
volve all coefficient correlations E{a k’I’ } In contrast, robus-

ton processing uses only the robuston correlatlons Mkl defined as

the average of E{a } (same I, same p) over p=0,---,P—1,
1 P-1
kol = 5 Z E{orkI ,, )1 (6)

Thus, r, ., can be interpreted as an integral measure of the corre-
lation of the two robustons x, ,[n] and x,,, [n] located in the kth and
k’th time block and the Ith frequency band. In fact, one can show

1
kki = p E{<Xk,rvsk—erkar>}'

For k' = k, we obtain Mkl = Ekr /P with the mean robuston energy
Ey) = E{Ix I”} = Zg;clJE{WéT)‘Z}-

Estimation. An unbiased estimator of the robuston correlation Mkl
using a single realization of x[n] is given by (cf. (6))

P
- alP)
=5 Z &

This estimate is more stable than the estimate aép) aliﬁ)* of an in-

dividual coefficient correlation E{a } because it uses aver-

aging over P orthogonal LCB components (intra-subspace averag-
ing). In particular, if aé'lj) and a(p’) are statistically independent for

p' # p and a( Pap)* has the same variance for p=0,---,P—1, the

estimation va rlance is reduced by a factor of P. Thus, the statisti-
cal descriptors used by robuston signal processing can be estimated
with improved stability. (Of course, additional averaging can be
used in all estimates if several realizations of x[n] are available.)

1
=P <Xk,l » Syk X ) U]

4. ROBUSTON PROCESSES

Definition and expressions. The robuston correlations Mk Pro-
vide a second-order description of x[n] that is incomplete in general
(though sufficient for robuston signal processing). This description
becomes complete if x[n] is a robuston process (RP) that is defined
by the following properties of the (zero-mean) coefficients ali’l’):

p') # (1,p)) are

a(P and a&}{) at different frequencies (i.e., (I

uncorrelated

o a(? and aP) at the same frequency (same (1, p)) have equal cor-

relation for all p, i.e., E{aé‘lﬁaéﬁ)*} =Ty forp=0,---P-1.
These properties can be summarized as
E{a k/‘T? b= Tk O Op - (8)
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(Note that because E{a(p) (p>*} was assumed equal for all p, the

expression ry . = E{a } is consistent with our previous
definition of Mk in (6). ) From (8) and (2), the cross-correlation of

two robustons x| [n] and x,, |, [n] of an RP is readily obtained as

E{X; X [M]} = Ty Prege 11191,

where P\, [n,n'] = zﬁféu(p [n]ul p>*[ n'] is the kernel of the oper-
ator S,_,, P, ;. This again shows that Mk describes the correlation
of X, [n] and x,, [n]; furthermore, robustons in different frequency

bands (I # 1) are uncorrelated. Finally, with (1) the correlation
R[n,n’] := E{x[n]x*[n]} of an RP can be calculated. The associ-
ated correlation operator (whose kernel is R[n,n’]) is obtained as

o L-1
R=Y Z)Rk““ with Ry,
k=—w =0 ’

k+M
= Z Mokt Sk Py - )
wfem

Here, M denotes the robuston correlation length (i.e., Mkl = 0 for
|k—k’| > M, where M may be infinite). Comparing with (4), we see
that the correlation operator of an RP has the structure of an RF,
with the filter coefficients h, Kl given by the robuston correlations
Mkl This structural equivalence of RFs and RPs has important im-
pllcatlons for robuston signal processing, as will be seen presently.

Properties. In the following summary of properties of RPs, we will
use the robuston correlation matrices R, defined by [R,], v = Iy -
Note that R}' = R, because rj; ., = rk“k,, '

P,: Astationary white process (i.e., R = 021) is an RP with robuston
correlations Mok = ozékk, orR, = o2l forall l.

P,: A weighted sum x[n] = [n} +bx 2>[ n] (with a,b nonrandom)

oftwouncorrelated RPsx n} andx [n] |san RPWlth Nk =
[af2rie, + IbIZrc, or Ry =[al?RiY + b*RiZ

P42 An innovations filter for an RP x[n] (i.e., a system H satisfying
HH™ = R) is given by any RF whose coefﬁuent matrices H,
satisfy H H' =R,.

P,: A noise whitening filter for an RP x[n] (i.e., a system H satisfy-
ing HRHT = 1) is glven by any RF whose coefficient matrices
H, satisfy H R ﬂ| =1

5. APPLICATION TO SIGNAL ESTIMATION

As an example illustrating the application of the robuston scheme
in statistical signal processing, we now consider nonstationary sig-
nal estimation. Let s[n] and v[n] be mutually uncorrelated, non-
stationary signal and noise processes with correlation operator R(®
and R(Y), respectively. We wish to estimate s[n] from the observed
(noisy) signal x[n] = s[n] + v[n] by means of a linear, time-varying
filter H. The filter minimizing the mean-square error (MSE) € =
E{||$ —s||2} with §[n] = (Hx)[n] is given by the equation HR™® =
R(S) whose solution is the nonstationary Wiener filter [5, 6]
HW = ROR®-1  with R¥ =R® +RV).  (10)
A robuston-type Wiener filter can be obtained by two alternative
approaches that will be seen to yield essentially the same result.

Wiener filter for robuston processes. In the first approach, we
model s[n] and v[n] as uncorrelated RPs with robuston correlation

matrices R(® and R{"), respectively. Using the structural equivalence

of RPs and RFs (see Section 4) and the RF properties P;—Pg from
Section 2, it then follows that the Wiener filter in (10) is an RF with
coefficient matrices

HY = RER™-L with R =RE+RMV). (12)
Indeed, because R and R(Y) are RFs, also R® = R(S) 1 R(V) and,
in turn, R®-1 and HY = RORX®-1 are RFs. Note that the RF
structure of HW is a direct consequence of the RP structure of s[n]
and v[n]; no a priori assumption that H is an RF was used. The

coefficient equations corresponding to (11) read

00

:Z kK,Kk, r|<(j><,;l, kK ez, (12)
Wlthl’(lzl |<<|Z/ —l—rI((k),

Thus, we have obtained a nonstationary Wiener filter that is an

RF and whose design only requires knowledge of the robuston cor-
relations r(S I)(, and r! k> We finally note that the minimum MSE
achieved with HY can ‘be calculated as &y, = S5, ¥ L,

with 01" the kth diagonal element of the matrix PR( IR I(X) 135 ),

Optimal robuston filter for general processes. In the second ap-
proach, we do not assume an RP structure for s[n] and v[n] but we
constrain H to be an RF of the form (4) with given length parame-
ters My, M,. The RF coefficients hy ,,, minimizing the MSE & can
be derived as follows. The MSE allows the decomposition

o L-1
€= P |Z)£kl with 5k|—E{”Sk|*5k|||}

where §,[n] and s, [n] are the robustons of $[n] and s[n], respec-

tively. From
k+M,

Silnl = Z Bt (St P ) [N (13)
K=k=M,

we see that & depends only on the coefficients hkk,I and not on
other coefficients th i Therefore, each g, can be minimized
separately with respect to the associated hkk,I Due to (13) and
the orthogonality principle [5, 6], each robuston error component
§1 [n] — sy, [n] must satisfy E{ (8| =Sy, Sy_w Py, X)} =0fork'e
[k—My,k+M,]. With (13), this yields the set of equations

k+M,
Z M T =1, keZ, Kek=Myk+My), (14)
k=k=m, T "’
with r® =¢84 V) Remarkably, calculation of the optimal

kkI kk’ kKl

RF requires only the robuston correlations rf( B( and rl(("k), although

s[n] and v[n] were not assumed to be RPs. We can write (14) as the
system of equations of size (M; +M, +1) x (M; +M,+1)

RM¥p, =9

B =L
with [R(X)]mm I(<)2mk+ml' [hk,l]m: hk,k+m;ll and Mjﬂ =

- (m,m’ € [-M;,M,]). The vector hy, contains the M; +
M, + 1 RF coefficients for the robuston index (k,I); it is given by

heet = Rf}? 1els) (15)

L

The resulting minimum MSE is given by emm zk,_m zl 0 s&“,'“,
where gi" = E< 9 — Prf() R(X=1r(S ) with E = E{lsy 1}
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Figure 2: Estimation of a speech signal: (a) Spectrogram of signal

s[n], (b) signal s[n], (c) noisy signal x[n] = s[n] + v[n] for an SNR
of 0dB, (d) estimate $[n] obtained with RF H%' (M; = M, =1,
N = 256, P = 32), (e) estimate $[n] obtained with SWF HSWF,

It is interesting to note that the equations (14) are equivalent to
(12) except for the finite filter length and the finite k’ range. For
M; = M, = =, our two approaches become altogether equivalent.
For M; = M, =0, on the other hand, the optimal RF becomes

<)

t t
HOPt — P Zjh"p P, forM;=M,=0,

where hoPt — r{ kI/r o — E\S/EX EIESI)/(E()+E< )). This
filter was prevrously shown to be mmrmax robust with respect to
specific uncertainty classes for the correlations of s[n] and v[n] [1,2].

Simulation results. To assess the performance of robuston signal
processing, we apply the optimal RF HO! in (15) to the estimation
of a speech signal. We used a recorded speech signal of length 4096
samples as a realization s[n] of a nonstationary signal process with
unknown statistics (thus, s[n] is not the realization of an RP). The
noise v[n] was a realization of a stationary and white process with
known variance o2. The signal s[n] and its noisy version x[n] =
s[n] + v[n] (for an SNR of 0dB) are shown in Fig. 2(a)-(c).

For designing HOP, an estimate rl(( Iz, of rf( |2/| was calculated

from x[n] according to (7), and an estimate of r(S)

e s then ob-
tained as rf( & = [rf( &/ — 029, (corresponding to the positive

semidefinite part of the matrix R( 9 R(X O'2|) The RF used filter
lengths M; =M, =1 (i.e., total frlterlengthM +M,+-1=3), block
length N = 256, and robuston dimensions P € {1,2,4,8, -+, 256}
For comparison, we also considered an RF with M, =M, =0
(i.e., total filter length 1) and P = 1 (i.e., no averaging over sub-
bands). Here, each single subband signal sample (i.e., LCB expan-
sion coefﬁcrent algo) X,u )) is separately werghted by hkl

B /B, with estimated subband sample powers B{X) = (9|2 and

Pﬁ = [|a |2 0] (whichis |a(9|?— o if thls number is pos-
itive and 0 otherwrse) This filter, hereafter denoted by HSWF, can be
viewed as a simple on-line “subband Wiener filter” (SWF) that does
not exploit the correlations of temporally adjacent or( 9) and does not
employ intra-subspace averaging. Therefore, our comparlson Hopt

ASNR]dB]

16 32 64 128 256

— =P

Figure 3: SNR improvement using H (M; = M, = 1, N = 256)
vs. subspace dimension P, for three dlf'ferent input SNRs. For com-
parison, also the SNR improvement using HSWF is shown.

vs. HSWF shows the effect of temporal filtering (M; + M, + 1 >
1) and subspace averaging (P > 1) on the estimation performance.
Note that we do not consider the full-blown Wiener filter HW in
(10) because the computational complexity of its design and imple-
mentation would be excessive for the given signal length of 4096
samples. Figs. 2(d) and (e) show the signal estimates $[n] obtained
with HOP' (with M; = M, =1, N = 256, P = 32, and L = 8) and
HSWF Clearly, the result of HOP is much better than that of HSWF,
For a more complete performance comparison and analysis, we
repeated the experiment described above 40 times, using the same
speech signal s[n] but different noise signals v[n]. Fig. 3 shows the
SNR improvement (averaged over the 40 realizations) obtained with
HOPt s, the subspace dimension P, for three different input SNRs.
For all three input SNRs, the maximum SNR improvement is ob-
tained for P = 32 (e.g., 4.4dB at input SNR 0d 2 For comparison,
also the SNR improvement obtained with HSWF is plotted (recall
that HSWF uses P = 1 and M; = M, = 0). It is seen that HO out-
performs HSWF by up to about 4 dB. These results demonstrate the
potential performance advantages of robuston signal processing.

6. CONCLUSIONS

We have introduced a new paradigm for nonstationary signal pro-
cessing in which subspace signal components (called robustons) are
used as elementary atomic entities. The resulting reduced-detail sig-
nal modeling and processing methods employ intra-subspace aver-
aging to estimate the relevant statistics with improved stability. Ro-
buston signal processing allows efficient on-line implementations
with inherent localization in time and frequency. The performance
advantages of robuston signal processing were demonstrated for a
nonstationary signal estimation application.
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