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ABSTRACT
We introduce a reduced-detail paradigm for nonstationary statistical
signal processing with enhanced performance. Time-frequency lo-
calized subspace signal components (called robustons) are used as
atomic entities for statistical signal modeling and processing. Ro-
buston signal processing employs special time-varying filters that
allow an efficient on-line implementation, and statistical signal de-
scriptors that can be estimated in a stable manner by means of intra-
subspace averaging. We develop the principles of robuston signal
processing and consider optimal nonstationary signal estimation as
a specific application. The performance advantages of the resulting
“robuston Wiener filters” are assessed by means of simulations.

1. INTRODUCTION

A statistical signal model or a method for statistical signal process-
ing is of little practical value if it is so detailed that the parameters
involved cannot be estimated with sufficient accuracy. This is es-
pecially true in nonstationary environments where averaging over
longer time periods cannot be used.

In this paper, therefore, we propose a reduced-detail paradigm
for nonstationary statistical signal processing with improved statis-
tical stability. Signals are decomposed into time-frequency local-
ized subspace components (termed robustons), and each robuston is
considered as an atomic entity for statistical signal modeling and
processing. Also, not all statistical dependencies between different
robustons are taken into account. The relevant second-order statis-
tics can be estimated by means of intra-subspace averaging, which
results in signal processing methods with enhanced statistical ro-
bustness. In fact, this robuston paradigm generalizes a previously
proposed scheme that is robust in a minimax sense [1, 2].

The paper is organized as follows. After a review of the robuston
subspace decomposition [1,2] in this section, Section 2 proposes ro-
buston filters that are the workhorse of robuston signal processing.
The statistical signal descriptors (robuston correlations) used and
their stable estimation are discussed in Section 3. Section 4 presents
a corresponding statistical signal model (robuston processes). Fi-
nally, Section 5 develops the application of robuston signal process-
ing to optimal nonstationary signal estimation (Wiener filtering) and
assesses the performance advantages of robuston Wiener filters.

Robuston decomposition. We use a decomposition of a discrete-
time signal x[n] into subspace components (robustons) xk,l [n],

x[n] =
∞

∑
k=−∞

L−1

∑
l=0

xk,l [n] , (1)

where k is a time index and l is a frequency index [1, 2]. Each ro-
buston xk,l [n] lies in a P-dimensional linear signal subspace Xk,l =
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Figure 1: Time-frequency localization of the signal subspaces Xk,l ,
with X1,1 blown up into its LCB functions (subspace dimension P =
4 assumed). Only positive frequencies are shown.

span
{

u(p)
k,l

[n]
}

p=0,···,P−1 that is spanned by the following P local co-
sine basis (LCB) functions [3, 4]:

u(p)
k,l

[n] =

√

2
N

cos

(

π
lP+ p+1/2

N
(n−kN)

)

w[n−kN] ,

with k ∈ Z, l ∈ [0,L− 1], and p ∈ [0,P− 1]. Here, N = LP is the
block length and w[n] is a suitably chosen window with effective
time duration N [3, 4]. As shown in Fig. 1, the robuston decompo-
sition corresponds to a uniform tiling of the time-frequency plane.
Specifically, Xk,l—and, thus, the robuston xk,l [n] ∈ Xk,l—is effec-
tively localized within the time interval (block) [kN,(k + 1)N] and
the frequency band

[ lP
2N ,

(l+1)P
2N

]

. The LCB functions u(p)
k,l

[n] form
an orthonormal basis of l2(Z), and thus {Xk,l}k∈Z,l∈[0,L−1]

is an
orthogonal partition of l2(Z). The robustons can be calculated as

xk,l [n] = (Pk,l x)[n] =
P−1

∑
p=0

α(p)
k,l

u(p)
k,l

[n] , (2)

where

α(p)
k,l

= 〈x,u(p)
k,l

〉 =
∞

∑
n=−∞

x[n]u(p)∗
k,l

[n] ,

and Pk,l denotes the orthogonal projection operator on Xk,l . We
note that u(p)

k+m,l
[n] = u(p)

k,l
[n−mN] and hence xk,l [n−mN]∈Xk+m,l .

2. ROBUSTON FILTERS

Definition and expressions. Robuston filters (RFs) are the work-
horse of robuston signal processing. An RF H is a linear, time-
varying filter that relates the robustons xk,l [n] of the filter input x[n]
and the robustons yk,l [n] of the filter output y[n] = (Hx)[n] as

yk,l [n] =
k+M2

∑
k′=k−M1

hk,k′;l xk′,l [n−(k−k′)N] . (3)
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That is, yk,l [n] is a weighted sum of the (suitably time-shifted) xk′,l [n]
located in the same (l th) frequency band—thus, there is no “cross
talk” between different frequency bands—and within a local neigh-
borhood k′ ∈ [k−M1,k + M2] of the current (kth) block. The filter
coefficient hk,k′;l describes the mapping of xk′,l [n] to yk,l [n]. The fil-
ter length is given by M1 +M2 +1. Note that an RF processes each
robuston as an entity, without distinguishing between the individual
LCB components within the robuston.

Using y[n] = ∑∞
k=−∞ ∑L−1

l=0 yk,l [n] and xk,l [n] = (Pk,l x)[n], the input-
output relation of the RF H defined by (3) is obtained as

(Hx)[n] =
∞

∑
k=−∞

L−1

∑
l=0

[

k+M2

∑
k′=k−M1

hk,k′;l (Pk′,l x)[n−(k−k′)N]

]

.

Introducing the block time-shift operator Sm as (Sm x)[n] = x[n−
mN], we can write the RF operator as

H =
∞

∑
k=−∞

L−1

∑
l=0

Hk,l , with Hk,l =
k+M2

∑
k′=k−M1

hk,k′;l Sk−k′Pk′,l . (4)

The component system Hk,l is associated to Xk,l in that (Hk,l x)[n] =

yk,l [n]∈Xk,l (cf. (3)). Because of (2) and u(p)
k+m,l

[n] = u(p)
k,l

[n−mN],
the elementary systems Sk−k′Pk′,l can be expressed as

(Sk−k′Pk′,l x)[n] =
P−1

∑
p=0

α(p)
k′,l

u(p)
k,l

[n] , with α(p)
k,l

= 〈x,u(p)
k,l

〉 . (5)

For M1 = M2 = 0, we obtain Hk,l = hk,k;l Pk,l , and thus the RF
reduces to the weighted sum of projectors [1, 2]

H =
∞

∑
k=−∞

L−1

∑
l=0

hk,k;l Pk,l for M1 = M2 = 0 .

Implementation and complexity. RFs allow an efficient on-line
implementation. For the kth block of length N, this implementation
consists of the following three steps:

1. LCB analysis: Calculation of α (p)
k,l

= 〈x,u(p)
k,l

〉.

2. “Subband filtering”: Calculation of α̃(p)
k,l

= ∑k+M2
k′=k−M1

hk,k′;l α(p)
k′,l

.

3. LCB synthesis: Calculation of yk[n] = ∑L−1
l=0 ∑P−1

p=0 α̃(p)
k,l

u(p)
k,l

[n].

Using efficient discrete cosine transform algorithms for the LCB
analysis and synthesis steps [3, 4], the computational complexity of
this implementation is O

(

N (2 log2 N +M1 +M2)
)

per signal block
and thus O(2log2 N +M1 +M2) per output signal sample. Another
practically attractive feature of RFs is that they allow easy control of
the physically important parameters time and frequency. This is due
to the time-frequency localization of the subspaces Xk,l (cf. Fig. 1).

Properties. Some theoretical properties of RFs are summarized in
the following. For notational convenience, we will use the coeffi-
cient matrices H l defined as [H l ]k,k′ = hk,k′;l .

P1: The identity operator I is an RF with coefficients hk,k′;l = δk,k′
or equivalently H l = I (the identity matrix) for all l.

P2: The adjoint H+ of an RF H is an RF with coefficients h∗k′,k;l or
HH

l (H denotes Hermitian matrix transpose).

P3: A weighted sum (weighted parallel connection) H = aH(1) +
bH(2) of two RFs H(1) and H(2) is an RF with coefficients
hk,k′;l = ah(1)

k,k′;l
+bh(2)

k,k′;l
or H l = aH(1)

l
+bH(2)

l
.

P4: The composition (series connection) H = H(2)H(1) of two RFs
is an RF with hk,k′;l = ∑κ h(2)

k,κ;l
h(1)

κ,k′;l
or H l = H(2)

l
H(1)

l
.

P5: If the inverse H−1 of an RF H exists, it is an RF with coefficient
matrices H−1

l .

3. ROBUSTON CORRELATIONS

Definition. Robuston processing is based on a reduced-detail de-
scription of the second-order signal statistics. For a zero-mean,
nonstationary random process x[n], the LCB expansion coefficients
α(p)

k,l
= 〈x,u(p)

k,l
〉 are zero-mean random variables. A complete de-

scription of the second-order statistics of x[n] would generally in-
volve all coefficient correlations E

{

α(p)
k,l

α(p′)∗
k′,l′

}

. In contrast, robus-
ton processing uses only the robuston correlations rk,k′;l defined as
the average of E

{

α(p)
k,l

α(p)∗
k′,l

}

(same l, same p) over p = 0, · · ·,P−1,

rk,k′;l :=
1
P

P−1

∑
p=0

E
{

α(p)
k,l

α(p)∗
k′,l

}

. (6)

Thus, rk,k′;l can be interpreted as an integral measure of the corre-
lation of the two robustons xk,l [n] and xk′,l [n] located in the kth and
k′th time block and the lth frequency band. In fact, one can show

rk,k′;l =
1
P

E
{〈

xk,l , Sk−k′ xk′,l

〉}

.

For k′ = k, we obtain rk,k;l = Ēk,l/P with the mean robuston energy

Ēk,l := E
{

‖xk,l‖
2
}

= ∑P−1
p=0 E

{

|α(p)
k,l

|2
}

.

Estimation. An unbiased estimator of the robuston correlation rk,k′;l
using a single realization of x[n] is given by (cf. (6))

r̂k,k′;l =
1
P

P−1

∑
p=0

α(p)
k,l

α(p)∗
k′,l

=
1
P

〈

xk,l , Sk−k′ xk′,l

〉

. (7)

This estimate is more stable than the estimate α (p)
k,l

α(p)∗
k′,l

of an in-

dividual coefficient correlation E
{

α(p)
k,l

α(p)∗
k′,l

}

because it uses aver-
aging over P orthogonal LCB components (intra-subspace averag-
ing). In particular, if α (p)

k,l
and α(p′)

k′,l
are statistically independent for

p′ 6= p and α(p)
k,l

α(p)∗
k′,l

has the same variance for p = 0, · · ·,P−1, the

estimation va riance is reduced by a factor of P. Thus, the statisti-
cal descriptors used by robuston signal processing can be estimated
with improved stability. (Of course, additional averaging can be
used in all estimates if several realizations of x[n] are available.)

4. ROBUSTON PROCESSES

Definition and expressions. The robuston correlations rk,k′;l pro-
vide a second-order description of x[n] that is incomplete in general
(though sufficient for robuston signal processing). This description
becomes complete if x[n] is a robuston process (RP) that is defined
by the following properties of the (zero-mean) coefficients α (p)

k,l
:

• α(p)
k,l

and α(p′)
k′,l′

at different frequencies (i.e., (l ′, p′) 6= (l, p)) are

uncorrelated.

• α(p)
k,l

and α(p)
k′,l

at the same frequency (same (l, p)) have equal cor-

relation for all p, i.e., E
{

α(p)
k,l

α(p)∗
k′,l

}

= rk,k′;l for p = 0, · · ·,P−1.

These properties can be summarized as

E
{

α(p)
k,l

α(p′)∗
k′,l′

}

= rk,k′;l δl,l′ δp,p′ . (8)
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(Note that because E
{

α(p)
k,l

α(p)∗
k′,l

}

was assumed equal for all p, the

expression rk,k′;l = E
{

α(p)
k,l

α(p)∗
k′,l

}

is consistent with our previous

definition of rk,k′;l in (6).) From (8) and (2), the cross-correlation of
two robustons xk,l [n] and xk′,l′ [n] of an RP is readily obtained as

E
{

xk,l [n]x∗k′,l′ [n
′]
}

= rk,k′;l Pk,k′;l [n,n′]δl,l′ ,

where Pk,k′;l [n,n′] = ∑P−1
p=0 u(p)

k,l
[n]u(p)∗

k′,l
[n′] is the kernel of the oper-

ator Sk−k′Pk′,l . This again shows that rk,k′;l describes the correlation
of xk,l [n] and xk′,l [n]; furthermore, robustons in different frequency
bands (l 6= l′) are uncorrelated. Finally, with (1) the correlation
R[n,n′] := E

{

x[n]x∗[n′]
}

of an RP can be calculated. The associ-
ated correlation operator (whose kernel is R[n,n′]) is obtained as

R =
∞

∑
k=−∞

L−1

∑
l=0

Rk,l , with Rk,l =
k+M

∑
k′=k−M

rk,k′;l Sk−k′Pk′,l . (9)

Here, M denotes the robuston correlation length (i.e., rk,k′;l = 0 for
|k−k′|> M, where M may be infinite). Comparing with (4), we see
that the correlation operator of an RP has the structure of an RF,
with the filter coefficients hk,k′;l given by the robuston correlations
rk,k′;l . This structural equivalence of RFs and RPs has important im-
plications for robuston signal processing, as will be seen presently.

Properties. In the following summary of properties of RPs, we will
use the robuston correlation matrices R l defined by [R l ]k,k′ = rk,k′;l .
Note that RH

l = Rl because r∗k′,k;l = rk,k′;l .

P1: A stationary white process (i.e., R = σ 2 I) is an RP with robuston
correlations rk,k′;l = σ2δk,k′ or Rl = σ2 I for all l.

P2: A weighted sum x[n] = ax(1)[n]+bx(2)[n] (with a,b nonrandom)
of two uncorrelated RPs x(1)[n] and x(2)[n] is an RP with rk,k′;l =

|a|2 r(1)
k,k′;l

+ |b|2 r(2)
k,k′;l

or Rl = |a|2 R(1)
l

+ |b|2 R(2)
l

.

P3: An innovations filter for an RP x[n] (i.e., a system H satisfying
HH+ = R) is given by any RF whose coefficient matrices H l
satisfy H lH

H
l = Rl .

P4: A noise whitening filter for an RP x[n] (i.e., a system H satisfy-
ing HRH+ = I) is given by any RF whose coefficient matrices
Hl satisfy H lRlH

H
l = I.

5. APPLICATION TO SIGNAL ESTIMATION

As an example illustrating the application of the robuston scheme
in statistical signal processing, we now consider nonstationary sig-
nal estimation. Let s[n] and ν [n] be mutually uncorrelated, non-
stationary signal and noise processes with correlation operator R(s)

and R(ν), respectively. We wish to estimate s[n] from the observed
(noisy) signal x[n] = s[n]+ ν [n] by means of a linear, time-varying
filter H. The filter minimizing the mean-square error (MSE) ε =
E{‖ŝ− s‖2} with ŝ[n] = (Hx)[n] is given by the equation HR(x) =

R(s) whose solution is the nonstationary Wiener filter [5, 6]

HW = R(s)R(x)−1, with R(x) = R(s) +R(ν). (10)

A robuston-type Wiener filter can be obtained by two alternative
approaches that will be seen to yield essentially the same result.

Wiener filter for robuston processes. In the first approach, we
model s[n] and ν [n] as uncorrelated RPs with robuston correlation
matrices R(s)

l
and R(ν)

l
, respectively. Using the structural equivalence

of RPs and RFs (see Section 4) and the RF properties P3–P5 from
Section 2, it then follows that the Wiener filter in (10) is an RF with
coefficient matrices

HW
l = R(s)

l
R(x)−1

l
, with R(x)

l
= R(s)

l
+R(ν)

l
. (11)

Indeed, because R(s) and R(ν) are RFs, also R(x) = R(s) +R(ν) and,
in turn, R(x)−1 and HW = R(s)R(x)−1 are RFs. Note that the RF
structure of HW is a direct consequence of the RP structure of s[n]
and ν [n]; no a priori assumption that H is an RF was used. The
coefficient equations corresponding to (11) read

∞

∑
κ=−∞

hk,κ;l r(x)
κ,k′;l

= r(s)
k,k′;l

, k,k′∈ Z , (12)

with r(x)
k,k′;l

= r(s)
k,k′;l

+ r(ν)
k,k′;l

.

Thus, we have obtained a nonstationary Wiener filter that is an
RF and whose design only requires knowledge of the robuston cor-
relations r(s)

k,k′;l
and r(ν)

k,k′;l
. We finally note that the minimum MSE

achieved with HW can be calculated as εmin = ∑∞
k=−∞ ∑L−1

l=0 εmin
k,l ,

with εmin
k,l the kth diagonal element of the matrix PR(s)

l
R(x)−1

l
R(ν)

l
.

Optimal robuston filter for general processes. In the second ap-
proach, we do not assume an RP structure for s[n] and ν [n] but we
constrain H to be an RF of the form (4) with given length parame-
ters M1,M2. The RF coefficients hk,k′;l minimizing the MSE ε can
be derived as follows. The MSE allows the decomposition

ε =
∞

∑
k=−∞

L−1

∑
l=0

εk,l , with εk,l = E
{

‖ŝk,l−sk,l‖
2} ,

where ŝk,l [n] and sk,l [n] are the robustons of ŝ[n] and s[n], respec-
tively. From

ŝk,l [n] =
k+M2

∑
k′=k−M1

hk,k′;l (Sk−k′Pk′,l x)[n] (13)

we see that εk,l depends only on the coefficients hk,k′;l and not on
other coefficients h

k̃,k′;l̃
. Therefore, each εk,l can be minimized

separately with respect to the associated hk,k′;l . Due to (13) and
the orthogonality principle [5, 6], each robuston error component
ŝk,l [n]− sk,l [n] must satisfy E

{〈

ŝk,l−sk,l , Sk−k′Pk′,l x
〉}

= 0 for k′∈
[k−M1,k +M2]. With (13), this yields the set of equations

k+M2

∑
κ=k−M1

hk,κ;l r(x)
κ,k′;l

= r(s)
k,k′;l

, k ∈ Z , k′∈ [k−M1,k +M2] , (14)

with r(x)
k,k′;l

= r(s)
k,k′;l

+ r(ν)
k,k′;l

. Remarkably, calculation of the optimal

RF requires only the robuston correlations r(s)
k,k′;l

and r(ν)
k,k′;l

although

s[n] and ν [n] were not assumed to be RPs. We can write (14) as the
system of equations of size (M1 +M2 +1)× (M1 +M2 +1)

R(x)
k,l

hk,l = r(s)
k,l

,

with
[

R(x)
k,l

]

m,m′ = r(x)
k+m′,k+m;l

,
[

hk,l

]

m = hk,k+m;l , and
[

r(s)
k,l

]

m =

r(s)
k,k+m;l

(m,m′ ∈ [−M1,M2]). The vector hk,l contains the M1 +

M2 +1 RF coefficients for the robuston index (k, l); it is given by

hopt
k,l

= R(x)−1
k,l

r(s)
k,l

. (15)

The resulting minimum MSE is given by εmin = ∑∞
k=−∞ ∑L−1

l=0 εmin
k,l ,

where εmin
k,l = Ē(s)

k,l
−P r(s)H

k,l
R(x)−1

k,l
r(s)

k,l
with Ē(s)

k,l
:= E{‖sk,l‖

2}.
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Figure 2: Estimation of a speech signal: (a) Spectrogram of signal
s[n], (b) signal s[n], (c) noisy signal x[n] = s[n] + ν [n] for an SNR
of 0 dB, (d) estimate ŝ[n] obtained with RF Hopt (M1 = M2 = 1,
N = 256, P = 32), (e) estimate ŝ[n] obtained with SWF HSWF.

It is interesting to note that the equations (14) are equivalent to
(12) except for the finite filter length and the finite k′ range. For
M1 = M2 = ∞, our two approaches become altogether equivalent.
For M1 = M2 = 0, on the other hand, the optimal RF becomes

Hopt =
∞

∑
k=−∞

L−1

∑
l=0

hopt
k,l

Pk,l for M1 = M2 = 0 ,

where hopt
k,l

= r(s)
k,k;l

/r(x)
k,k;l

= Ē(s)
k,l

/Ē(x)
k,l

= Ē(s)
k,l

/
(

Ē(s)
k,l

+ Ē(ν)
k,l

)

. This
filter was previously shown to be minimax robust with respect to
specific uncertainty classes for the correlations of s[n] and ν [n] [1,2].

Simulation results. To assess the performance of robuston signal
processing, we apply the optimal RF Hopt in (15) to the estimation
of a speech signal. We used a recorded speech signal of length 4096
samples as a realization s[n] of a nonstationary signal process with
unknown statistics (thus, s[n] is not the realization of an RP). The
noise ν [n] was a realization of a stationary and white process with
known variance σ 2

ν . The signal s[n] and its noisy version x[n] =
s[n]+ν [n] (for an SNR of 0 dB) are shown in Fig. 2(a)–(c).

For designing Hopt, an estimate r̂(x)
k,k′;l

of r(x)
k,k′;l

was calculated

from x[n] according to (7), and an estimate of r(s)
k,k′;l

was then ob-

tained as r̂(s)
k,k′;l

=
[

r̂(x)
k,k′;l

−σ2
ν δk,k′

]

+ (corresponding to the positive

semidefinite part of the matrix R̂
(s)
l = R̂

(x)
l −σ2

ν I). The RF used filter
lengths M1 = M2 = 1 (i.e., total filter length M1 +M2 +1 = 3), block
length N = 256, and robuston dimensions P ∈ {1,2,4,8, · · ·,256}.

For comparison, we also considered an RF with M1 = M2 = 0
(i.e., total filter length 1) and P = 1 (i.e., no averaging over sub-
bands). Here, each single subband signal sample (i.e., LCB expan-
sion coefficient α (0)

k,l
= 〈x,u(0)

k,l
〉) is separately weighted by hk,l =

P̂(s)
k,l

/P̂(x)
k,l

, with estimated subband sample powers P̂(x)
k,l

= |α(0)
k,l

|2 and

P̂(s)
k,l

=
[

|α(0)
k,l

|2 −σ2
ν
]

+ (which is |α(0)
k,l

|2 −σ2
ν if this number is pos-

itive and 0 otherwise). This filter, hereafter denoted by HSWF, can be
viewed as a simple on-line “subband Wiener filter” (SWF) that does
not exploit the correlations of temporally adjacent α (0)

k,l
and does not

employ intra-subspace averaging. Therefore, our comparison Hopt
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Figure 3: SNR improvement using Hopt (M1 = M2 = 1, N = 256)
vs. subspace dimension P, for three different input SNRs. For com-
parison, also the SNR improvement using HSWF is shown.

vs. HSWF shows the effect of temporal filtering (M1 + M2 + 1 >
1) and subspace averaging (P > 1) on the estimation performance.
Note that we do not consider the full-blown Wiener filter HW in
(10) because the computational complexity of its design and imple-
mentation would be excessive for the given signal length of 4096
samples. Figs. 2(d) and (e) show the signal estimates ŝ[n] obtained
with Hopt (with M1 = M2 = 1, N = 256, P = 32, and L = 8) and
HSWF. Clearly, the result of Hopt is much better than that of HSWF.

For a more complete performance comparison and analysis, we
repeated the experiment described above 40 times, using the same
speech signal s[n] but different noise signals ν [n]. Fig. 3 shows the
SNR improvement (averaged over the 40 realizations) obtained with
Hopt vs. the subspace dimension P, for three different input SNRs.
For all three input SNRs, the maximum SNR improvement is ob-
tained for P = 32 (e.g., 4.4dB at input SNR 0dB). For comparison,
also the SNR improvement obtained with HSWF is plotted (recall
that HSWF uses P = 1 and M1 = M2 = 0). It is seen that Hopt out-
performs HSWF by up to about 4 dB. These results demonstrate the
potential performance advantages of robuston signal processing.

6. CONCLUSIONS

We have introduced a new paradigm for nonstationary signal pro-
cessing in which subspace signal components (called robustons) are
used as elementary atomic entities. The resulting reduced-detail sig-
nal modeling and processing methods employ intra-subspace aver-
aging to estimate the relevant statistics with improved stability. Ro-
buston signal processing allows efficient on-line implementations
with inherent localization in time and frequency. The performance
advantages of robuston signal processing were demonstrated for a
nonstationary signal estimation application.
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