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ABSTRACT 
 

Kalman filter is linear optimal estimator for random signals. We 
develop state-space RLS that is counterpart of Kalman filter for 
deterministic signals i.e. there is no process noise but only 
observation noise. State-space RLS inherits its optimality 
properties from the standard least squares. It gives excellent 
tracking performance as compared to existing forms of RLS. A 
large class of signals can be modeled as outputs of neutrally 
stable unforced linear systems. State-space RLS is particularly 
well suited to estimate such signals. The paper commences with 
batch processing the observations, which is later extended to 
recursive algorithms. Comparison and equivalence of Kalman 
filter and state-space RLS become evident during the 
development of the theory. State-space RLS is expected to 
become an important tool in estimation theory and adaptive 
filtering.  
 
 
 

1. INTRODUCTION 

Classical optimal filter theory revolves around Kalman filter, 
which is thought to be linear optimum tracker for random 
signals. In case of deterministic signals, the process noise is 
absent and the Kalman Gain approaches zero asymptotically. 
This in turn renders Kalman filter useless. The common way of 
getting around this limitation is to add some process noise [2]. 
However, this approach modifies the problem rather than finding 
an optimal solution. Recursive least-squares (RLS) appears to be 
a substitute of Kalman filter for such cases. However, a form of 
RLS that could become a true counterpart of Kalman filter for 
deterministic signals has not been developed previously. The 
best work so far is a state-space approach of RLS given by 
Sayed and Kailath [1]. A one-to-one correspondence between 
their RLS and Kalman filter can be drawn [9]. The main problem 
with this formulation is the loss of model information, which 
results in poor tracking performance. Haykin et al. [10] have 
given extended RLS algorithms that improve the performance.  

We take a different route from the classical approach 
and develop a truly state-space formulation of RLS. The signal 
to be estimated is modeled as output of an unforced linear time-
invariant system. The work begins with batch processing of 
noise corrupted observations, which is later extended to 

recursive algorithms whilst employing the concept of 
exponential forgetting. We cover core issues like stability 
conditions and initialization methods. Different forms of the 
filter are discussed. A steady state solution is derived which is 
computationally efficient as compared to most other estimation 
algorithms. Finally an example demonstrating the application 
and power of state-space RLS concludes the paper. 

2. STATE-SPACE MODEL 

Consider a discrete-time unforced system  

 
[ 1] [ ]

[ ] [ ] [ ]
x k A x k

y k C x k v k
+ =

= +
 (2.1) 

where nx R∈  and my R∈ . Observation noise is represented by 
[ ]v k . We make no assumptions about the nature of this noise at 

this stage. Notice the absence of ‘process noise’. We assume that 
the pair (A, C) is l-step observable and the matrix A is invertible. 
If the system is discretized version of a continuous-time system, 
then matrix A is derived from the state-transition matrix, which 
is always full rank. At this point we make no assumptions about 
the stability of the system. However, as we progress certain 
restriction will have to be made. 

3. LEAST SQUARES OBSERVATION 

We begin our discussion by batch processing the observations. 
From (2.1), we can write p different equations as follows. 
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 (3.1) 

where p l≥  and observation noise vector  is given by 

[ ][ ] [ ] [ 1] [ 2] [ 1] Tk v k v k v k p v k p= − − + − +v " . We 
may write (3.1) as 
 [ ] [ ] [ ]k Hx k k= +y v  (3.2) 
where [ ]ky  is the observation vector and H is defined as  
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The solution of system (3.2) in terms of least squares is given as 
follows [5], [11] 
 1ˆ[ ] ( ) [ ]T Tx k H H H k−= y  (3.4) 

The matrix 1( )T TH H H−  has dimensions n mp×  and can be 
calculated off-line. This is an important formula though the 
computations could be intense if p is large. Certain optimality 
properties associated with this solution can be found in [5], [11]. 
Another variant of (3.4) could be weighted least-squares 
solution. In this case we define a weighting matrix W and the 
corresponding solution is  
 1ˆ[ ] ( ) [ ]T Tx k H WH H W k−= y  (3.5) 

4. RECURSIVE ALGORITHM 

We assume pre-windowing of the observations i.e. 
 [ ] 0, 0y k k= <  (4.1) 
Let 1k p= − . Define the weighting matrix as 
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 (4.2) 

where 0 1λ< ≤ . Starting as scalars for 0k = , the matrices H, 
W and y  grow in size with time. We borrow a few symbols 
from classical formulation of RLS [9], however they will be used 
in a different meaning here. Let 
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 (4.3) 

which gives 
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 (4.4) 

4.1. Recursive Update of [ ]kΦ  

We have from (3.3), (4.2) and (4.3) 
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Similarly 
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Comparing (4.5) and (4.6) 
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4.2. Recursive Update of  1[ ]k−Φ  

We make use of matrix inversion lemma (see e.g. [9]) to arrive 
at the following result 
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Rearranging we get the Riccati equation for state-space RLS 
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If we are dealing with a single output system i.e. m=1, then 
equation (4.9) does not require matrix inversion. Otherwise, 
matrix of dimension m m×  is required to be inverted. 

4.3. Kalman Gain 

Define the Kalman Gain as 
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Equation (4.9) can now be written as 
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Rearranging (4.10) 
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4.4. Recursive Computation of [ ]z k  

From equation (3.1), (4.3) etc. 

 
( )[ ] [0]

[ 1] [ ]

kk T T

T T T

z k A C y

A C y k C y k

λ

λ

−
= +


+ − + "
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which gives us 
 [ ] [ 1] [ ]T Tz k A z k C y kλ −= − +  (4.14) 
Equations (4.9) and (4.14) constitute RLS in its general form. 
We will later discuss special cases of RLS that would be 
computationally efficient.  
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4.5. Kalman Estimator Form 

We derive a form that is similar to the usual Kalman Estimator 
form discussed in the literature. Define the predicted states as 
 ˆ[ ] [ 1]x k Ax k= −  (4.15) 
Similarly the predicted output is 
 [ ] [ ]y k C x k=  (4.16) 
From equation (4.4), (4.11), (4.12) and (4.14) 
 ( )ˆ[ ] [ ] [ ] [ ] [ ]x k x k K k y k y k= + −  (4.17) 
The final expression in (4.17) is the same as Kalman estimator 
form. We define the prediction error as 
 [ ] [ ] [ ]k y k y kε = −  (4.18) 
The prediction error is also referred to as innovations in Kalman 
filter theory.  

4.6. State-Space Representation of RLS estimator 

Since State-Space RLS estimator is a linear time-varying filter, 
the map from y to x̂  can be represented in state-space. It can be 

shown that the quadruplet { }1, , [ ] , [ ]T T TA C k A K kλ λ− − −Φ  

constitutes the requisite state-space matrices. 

4.7. Stability and Convergence of [ ]z k  

The stability of (4.14) is guaranteed if the eigenvalues of 1Aλ −
 

have magnitude less than or equal to unity. We have to impose a 
restriction on the upper bound of λ   
 min ( )Eigenvalues Aλ ≤  (4.19) 
An interesting observation is that an unstable system with all its 
eigenvalues outside the unit circle will not cause a problem for 

1λ ≤ . 

4.8. Stability and Convergence of [ ]kΦ  

The properties of the following matrix difference equation are 
discussed in [8] 
 [ 1] [ ]Tk P k P QΦ + = Φ +  (4.20) 
where 0Q ≥  is the forcing function. With any initial condition 

[0] 0Φ ≥ , the solution of (4.20) is well behaved for all 0k ≥  if 
all the Eigenvalues of P are strictly less than unity. Furthermore 
the steady state solution given by 
 lim [ ]

k
k

→∞
Φ = Φ  (4.21) 

satisfies the discrete Lyapunov equation 
 TP P QΦ −Φ = −  (4.22) 
However, if all the Eigenvalues of P are on the unit circle then 
the unique steady state solution of (4.20) is lim [ ]

k
k

→∞
Φ →∞  or 

equivalently 1lim [ ] 0
k

k−

→∞
Φ = . Let 

 
1

T

P A

Q C C

λ −=

=
 (4.23) 

Comparing (4.7) with (4.20), we see that the condition of 
convergence of (4.7) is  
 min ( )Eigenvalues Aλ ≤  (4.24) 

Condition (4.19) implies (4.24) because 1λ ≤ , therefore we take 
(4.19) as the condition of stability of the estimator. 

4.9. Neutrally Stable Systems 

If the system (2.1) is Poisson or neutrally stable, A has 
Eigenvalues on the unit circle. This class of systems plays a 
central role in state space RLS because a large number of signals 
can be modeled by these systems. It is easy to verify that in case 
of neutrally stable systems the condition (4.19) translates to  
 1λ ≤  (4.25) 

4.10. Initializing RLS and Peaking Phenomenon 

Proper initialization of any recursive algorithm is an important 
phase. There may be certain practical difficulties involved like 
the peaking phenomenon in high gain observers [3], [4]. 
However, the algorithm presented in equations (4.9) and (4.14) 
offers a self contained method for proper initialization and hence 
avoids problems like peaking. As the observations start to 
appear, we wait for l-samples ( [ ]H k  becomes full rank at this 
instant because of l-step observability assumption). Using the 
definitions in (3.1) to (3.3) with p=l, we can calculate ˆ[ 1]x l − . 

The matrix 1( )T TH H H−  in (3.4) can be calculated offline and 

the observation vector is [ 1] [0] [1] [ 1] Tl y y y l− = −  y " . 
The only problem for this initialization scheme could be the 
observation noise. This would still give us a legitimate estimate 
to start off the recursion. It is worth mentioning that Kalman 
filter [7] and classical RLS [9] face certain difficulties in the 
context of proper initialization. 

5.  STEADY STATE SOLUTION 

Steady state solutions in the realm of Kalman filtering have been 
important for their computational simplicity. Following 
somewhat similar lines, we investigate the steady state solution 
of the matrix difference equation (4.7), which is independent of 
the observations.  

5.1. Computing Φ  

We observe that Φ  is a solution of [12] 
 1T TA A C Cλ − −Φ −Φ = −  (5.1) 
if  
 min ( )Eigenvalues Aλ <  (5.2) 

The significance of this result is that Φ  and hence 1−Φ  can be 
calculated offline. 

5.2. Kalman Gain 

Kalman gain (4.12) is time-invariant in this case and is given by 
1 TC−Φ . 

5.3. Neutrally Stable Systems 

For a neutrally stable system, the requirement (5.2) prohibits the 
use of infinite memory. For steady state solution the condition of 
convergence is therefore  
 1λ <  (5.3) 
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6. EXAMPLE 

We want to track a sinusoidal wave ( ) sin( )r t tω φ= +  using 
steady state RLS filter. The discrete state-space model with 
sampling time T  corresponding to equation (2.1) for this 
continuous signal is 

cos( ) sin( ) sin( )
[ 1] [ ]; [0]

sin( ) cos( ) cos( )
[ ] [1 0] [ ] [ ]

T T
x k x k x

T T
y k x k v k

ω ω φ
ω ω φ

   
+ = =   −   
= +

 

The parameters used are 0.1,ω =  / 3,φ π=  0.1sT =  and 
0.95λ = . White zero-mean noise [ ]v k  with variance 0.001 

corrupts the observations. The estimation performances for 
different signal models are illustrated in Figure 1. The estimation 
errors are 1 1 1̂[ ] [ ] [ ]e k x k x k= −  and 2 2 2ˆ[ ] [ ] [ ]e k x k x k= − , where 

1̂[ ]x k  and 2ˆ [ ]x k  are the state estimates. The errors in constant 
velocity model are large as compared to constant acceleration 
model. However, since the models are not exact, exponential 
convergence is not observed for either case. For the case of exact 
model, perfect convergence in mean is achieved. In this case the 
prediction error process (4.18) asymptotically becomes white 
noise and can be regarded as innovations process in Kalman 
filtering. This in fact indicates the optimality of state-space RLS 
because it is impossible to reduce the prediction error to a level 
less than the observed white noise. 

All of the signal models used in this example are 
neutrally stable. Improper initialization results in peaking which 
could have been avoided by using the method of Section 4.10. 

State-space RLS has served as an optimal filter 
without any modification in the problem. Kalman filter on the 
other hand would have required addition of process noise which 
is equivalent to altering the problem or some other enhancement 
which may result in loss of optimality. Hence state-space RLS is 
the appropriate and optimal solution for deterministic signals. 

 

 

Figure 1 

7. CONCLUSION 

In this paper we have developed optimal linear estimator for 
deterministic signals. The method of least squares is one of the 
most common estimation schemes. However, our formulation of 
state-space RLS is much more flexible and powerful. Our work 
covers batch processing, recursive updates, stability conditions, 
initialization and steady state solutions etc. An example 
illustrates the power and usefulness of state-space RLS. 

We have only covered preliminary details in this 
paper. The theory however, is expected to attract a much wider 
area of research. It will give rise to new algorithms and solutions 
for a diverse range of estimation and adaptive filtering problems.  
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