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ABSTRACT

Kalman filter is linear optimal estimator for random signals. We
develop state-space RLS that is counterpart of Kalman filter for
deterministic signals i.e. there is no process noise but only
observation noise. State-space RLS inherits its optimality
properties from the standard least squares. It gives excellent
tracking performance as compared to existing forms of RLS. A
large class of signals can be modeled as outputs of neutrally
stable unforced linear systems. State-space RLS is particularly
well suited to estimate such signals. The paper commences with
batch processing the observations, which is later extended to
recursive algorithms. Comparison and equivalence of Kalman
filter and state-space RLS become evident during the
development of the theory. State-space RLS is expected to
become an important tool in estimation theory and adaptive
filtering.

1. INTRODUCTION

Classical optimal filter theory revolves around Kalman filter,
which is thought to be linear optimum tracker for random
signals. In case of deterministic signals, the process noise is
absent and the Kalman Gain approaches zero asymptotically.
This in turn renders Kalman filter useless. The common way of
getting around this limitation is to add some process noise [2].
However, this approach modifies the problem rather than finding
an optimal solution. Recursive least-squares (RLS) appears to be
a substitute of Kalman filter for such cases. However, a form of
RLS that could become a true counterpart of Kalman filter for
deterministic signals has not been developed previously. The
best work so far is a state-space approach of RLS given by
Sayed and Kailath [1]. A one-to-one correspondence between
their RLS and Kalman filter can be drawn [9]. The main problem
with this formulation is the loss of model information, which
results in poor tracking performance. Haykin et al. [10] have
given extended RLS algorithms that improve the performance.
We take a different route from the classical approach
and develop a truly state-space formulation of RLS. The signal
to be estimated is modeled as output of an unforced linear time-
invariant system. The work begins with batch processing of
noise corrupted observations, which is later extended to
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recursive algorithms whilst employing the concept of
exponential forgetting. We cover core issues like stability
conditions and initialization methods. Different forms of the
filter are discussed. A steady state solution is derived which is
computationally efficient as compared to most other estimation
algorithms. Finally an example demonstrating the application
and power of state-space RLS concludes the paper.

2. STATE-SPACE MODEL

Consider a discrete-time unforced system
X[k +1]= Ax[k]

@.1)
k] = Cx{k]+V[k]

where xe R" and y e R™. Observation noise is represented by
v[k]. We make no assumptions about the nature of this noise at
this stage. Notice the absence of ‘process noise’. We assume that
the pair (4, C) is I-step observable and the matrix 4 is invertible.
If the system is discretized version of a continuous-time system,
then matrix 4 is derived from the state-transition matrix, which
is always full rank. At this point we make no assumptions about
the stability of the system. However, as we progress certain
restriction will have to be made.

3. LEAST SQUARES OBSERVATION

We begin our discussion by batch processing the observations.
From (2.1), we can write p different equations as follows.

Ck—p+1]] | CAPNA] ]
k—p+2]| | CAP k]
k= : - : k 3.1
L R i IR S A
Mk —1] CA™'x[k]
LW g

where p>/ and observation noise vector

v[k]:[v[k] vk —1] vik—p+2] v[k—p+1]]T. We

may write (3.1) as

is given by

ylk]= Hx[k]+ v[k] (3.2)
where y[k] is the observation vector and H is defined as
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The solution of system (3.2) in terms of least squares is given as
follows [5], [11]

(k)= (H"H) " H y[k] (34)

The matrix (H Tn )71H T has dimensions nxmp and can be
calculated off-line. This is an important formula though the
computations could be intense if p is large. Certain optimality
properties associated with this solution can be found in [5], [11].
Another variant of (3.4) could be weighted least-squares
solution. In this case we define a weighting matrix W and the
corresponding solution is

k= HwHY ' H wylk) (3.5)
4. RECURSIVE ALGORITHM

We assume pre-windowing of the observations i.e.
Wk]1=0, k<0 4.1)
Let k= p—1. Define the weighting matrix as

A0 o000
0 AF! 0 0
wik]=| : ; 4.2)
0 0 10
0 0 -« 01

where 0< A<1. Starting as scalars for k=0, the matrices H,
W and y grow in size with time. We borrow a few symbols

from classical formulation of RLS [9], however they will be used
in a different meaning here. Let

O[k]= HT[K)W[k]H[k]

o (4.3)
2[k]=H" [k]W[k]ylk]

which gives
O[k]x{k] = z[k]
or 4.4)
x[k] = @ '[k]z[k]

4.1. Recursive Update of ®[k]

We have from (3.3), (4.2) and (4.3)
—k —k+1
®[k] —{z" (AT ) cTca™ +/1"*1(AT ) clea ™
(4.5)
et a4 TcTea s T CJ
Similarly
PETEY AL SR
@k —1]=| (A ) clea™ 4
4.6)
cor 24T e ¢ CTC}

Comparing (4.5) and (4.6)
Olk]=Ad4Tolk-1147"+CcTC
ATo[k]4= A0k -1]+ 4TcTc4
4.2. Recursive Update of fITl[k]

4.7)

We make use of matrix inversion lemma (see e.g. [9]) to arrive
at the following result

[ATd)[k]ATl =2 ok -1)-
2720 [k-114" T %
. 4.8)
[1 + 27 \ca g —1747CT } x

CAD [k 1]
Rearranging we get the Riccati equation for state-space RLS
o k=240 k114" -
272407 [k -1147 T x
- T (4.9)

[1+,1 CAd [k -1147C } x

CAD [k -114T
If we are dealing with a single output system i.e. m=1, then

equation (4.9) does not require matrix inversion. Otherwise,
matrix of dimension m xm is required to be inverted.

4.3. Kalman Gain

Define the Kalman Gain as
K[k]=2""40 [k -1147CT x

i (4.10)
[1 + 27 \can [k —1747CT }
Equation (4.9) can now be written as
o k)= [k -1147 -
(4.11)
A7 K[K1CAD [k —1]47
Rearranging (4.10)
K[k] = [A’IA(D’I[k 114 +
AT KkICAD [k - 1147 } cT’ (4.12)
=@ [k)cT
4.4. Recursive Computation of z[k]
From equation (3.1), (4.3) etc.
—k
2[k] = {1" (AT) cTy[01+
(4.13)
et 24TCT [k - 1]+ CTy[k]}
which gives us
k] =247 [k —11+ CT y[k] (4.14)

Equations (4.9) and (4.14) constitute RLS in its general form.
We will later discuss special cases of RLS that would be
computationally efficient.
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4.5. Kalman Estimator Form

We derive a form that is similar to the usual Kalman Estimator
form discussed in the literature. Define the predicted states as

X[k]= Ax{k —1] (4.15)
Similarly the predicted output is
ylk]=Cx[k] (4.16)
From equation (4.4), (4.11), (4.12) and (4.14)
Alk]=X[k]+ K[k](yk] - ¥Ik]) (4.17)

The final expression in (4.17) is the same as Kalman estimator
form. We define the prediction error as

&lk]= k] - y[k] (4.18)
The prediction error is also referred to as innovations in Kalman
filter theory.

4.6. State-Space Representation of RLS estimator

Since State-Space RLS estimator is a linear time-varying filter,
the map from y to X can be represented in state-space. It can be

shown that the quadruplet {/'iA_T,CT,/l(I)_l[k]A_T,K[k]}
constitutes the requisite state-space matrices.

4.7. Stability and Convergence of z[k]

The stability of (4.14) is guaranteed if the eigenvalues of A47!
have magnitude less than or equal to unity. We have to impose a
restriction on the upper bound of A

A <|min Eigenvalues(A)| (4.19)
An interesting observation is that an unstable system with all its

eigenvalues outside the unit circle will not cause a problem for
A<1.

4.8. Stability and Convergence of ®[k]

The properties of the following matrix difference equation are
discussed in [8]

o[k +1]1=PTO[kIP+ 0O (4.20)
where Q>0 is the forcing function. With any initial condition
®[0]> 0, the solution of (4.20) is well behaved for all £>0 if

all the Eigenvalues of P are strictly less than unity. Furthermore
the steady state solution given by

lim ®[k]=D 4.21)
k—
satisfies the discrete Lyapunov equation
PloP-d=—0 (4.22)

However, if all the Eigenvalues of P are on the unit circle then
the unique steady state solution of (4.20) is lim ®[k] > or
k—o

equivalently lim q)fl[k] =0.Let

k—o
P=a4"!
o=c'c
Comparing (4.7) with (4.20), we see that the condition of
convergence of (4.7) is
Jis ‘min Eigenvalues(A)‘ (4.24)

(4.23)

Condition (4.19) implies (4.24) because A <1, therefore we take
(4.19) as the condition of stability of the estimator.

4.9. Neutrally Stable Systems

If the system (2.1) is Poisson or neutrally stable, 4 has
Eigenvalues on the unit circle. This class of systems plays a
central role in state space RLS because a large number of signals
can be modeled by these systems. It is easy to verify that in case
of neutrally stable systems the condition (4.19) translates to

A<1 (4.25)

4.10. Initializing RLS and Peaking Phenomenon

Proper initialization of any recursive algorithm is an important
phase. There may be certain practical difficulties involved like
the peaking phenomenon in high gain observers [3], [4].
However, the algorithm presented in equations (4.9) and (4.14)
offers a self contained method for proper initialization and hence
avoids problems like peaking. As the observations start to
appear, we wait for /-samples ( H[k] becomes full rank at this
instant because of /-step observability assumption). Using the
definitions in (3.1) to (3.3) with p=/, we can calculate x[/—1].

The matrix (H Tn )71H T in (3.4) can be calculated offline and

-7

The only problem for this initialization scheme could be the
observation noise. This would still give us a legitimate estimate
to start off the recursion. It is worth mentioning that Kalman
filter [7] and classical RLS [9] face certain difficulties in the
context of proper initialization.

the observation vector is y[l—l]=[y[0] V1]

5. STEADY STATE SOLUTION

Steady state solutions in the realm of Kalman filtering have been
important for their computational simplicity. Following
somewhat similar lines, we investigate the steady state solution
of the matrix difference equation (4.7), which is independent of
the observations.

5.1. Computing ©
We observe that @ is a solution of [12]
adToa ' —o=-CTcC (5.1)
if
Ji< ‘min Eigenvalues(A)‘ (5.2)

The significance of this result is that @ and hence @' can be
calculated offline.

5.2. Kalman Gain

Kalman gain (4.12) is time-invariant in this case and is given by
el
5.3. Neutrally Stable Systems

For a neutrally stable system, the requirement (5.2) prohibits the
use of infinite memory. For steady state solution the condition of
convergence is therefore

A<1 (5.3)
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6. EXAMPLE

We want to track a sinusoidal wave r(f)=sin(@f + ¢) using

steady state RLS filter. The discrete state-space model with

sampling time 7 corresponding to equation (2.1) for this
—sin(wT) cos(wT)

continuous signal is
cos(wT) sin(wT sin
dhano] ©XET) sin@D] o [sinG)
cos(¢p)
Vk]=[1 O]x{k]+v{k]
The parameters used are w=0.1, ¢=x/3, T;=0.1 and
A=0.95. White zero-mean noise v[k] with variance 0.001
corrupts the observations. The estimation performances for
different signal models are illustrated in Figure 1. The estimation
errors are e[k]=x[k]—%[k] and e,[k]=x,[k]—X,[k], where
X[k] and x,[k] are the state estimates. The errors in constant

velocity model are large as compared to constant acceleration
model. However, since the models are not exact, exponential
convergence is not observed for either case. For the case of exact
model, perfect convergence in mean is achieved. In this case the
prediction error process (4.18) asymptotically becomes white
noise and can be regarded as innovations process in Kalman
filtering. This in fact indicates the optimality of state-space RLS
because it is impossible to reduce the prediction error to a level
less than the observed white noise.

All of the signal models used in this example are
neutrally stable. Improper initialization results in peaking which
could have been avoided by using the method of Section 4.10.

State-space RLS has served as an optimal filter
without any modification in the problem. Kalman filter on the
other hand would have required addition of process noise which
is equivalent to altering the problem or some other enhancement
which may result in loss of optimality. Hence state-space RLS is
the appropriate and optimal solution for deterministic signals.
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Figure 1

7. CONCLUSION

In this paper we have developed optimal linear estimator for
deterministic signals. The method of least squares is one of the
most common estimation schemes. However, our formulation of
state-space RLS is much more flexible and powerful. Our work
covers batch processing, recursive updates, stability conditions,
initialization and steady state solutions etc. An example
illustrates the power and usefulness of state-space RLS.

We have only covered preliminary details in this
paper. The theory however, is expected to attract a much wider
area of research. It will give rise to new algorithms and solutions
for a diverse range of estimation and adaptive filtering problems.
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