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ABSTRACT
We present two robust detectors for nonstationary random signals
that belong to p-point uncertainty classes, one being based on an
estimator-correlator approach, the other using the deflection crite-
rion. Apart of stable performance, these robust detectors have the
advantage of requiring only reduced prior knowledge. Using lo-
cal cosine bases, we provide an intuitive and highly efficient time-
frequency implementation of these robust detectors along with an
extension that permits signal-adaptive operation. Simulation results
illustrate the robustness of the proposed detectors.

1. INTRODUCTION

Problem Formulation. We consider the detection a nonstation-
ary random signal1 s(t) that is corrupted by additive nonstationary
Gaussian noise n(t). Signal and noise are assumed uncorrelated.
This problem corresponds to the hypothesis test H0 : x(t) = n(t)
versus H1 : x(t) = s(t)+n(t), with x(t) being the observed signal.

If s(t) is also Gaussian, the likelihood ratio test statistic (which
is optimal in the Neyman-Pearson and Bayesian sense) equals [1]

TLR(x) = 〈HLRx,x〉 , with HLR = R−1
n Rs(Rs +Rn)

−1. (1)

Rs and Rn denote the correlation operators2 of signal and noise.
If the distribution of s(t) is unknown, the likelihood ratio can-

not be determined. Here, the deflection d2 of a test statistic T (x) is
a reasonable alternative performance criterion. It is defined as [1]

d2 ,

(

E1{T (x)}−E0{T (x)}
)2

var0{T (x)} ,

where Ei{·} and vari{·} respectively denote expectation and vari-
ance conditioned on Hi. For real-valued quadratic test statistics
T (x) = 〈Hx,x〉 induced by a linear self-adjoint [2] operator (linear
time-varying filter) H, the deflection can be shown to equal [3]

d2(H;Rs,Rn) =
tr2{HRs}

tr{(HRn)2} . (2)

This expression is maximized by the detection filter [3]

HD , argmax
H

d2(H;Rs,Rn) = R−1
n RsR−1

n , (3)

with d2
max(Rs,Rn) , d2(HD;Rs,Rn) = tr{(RsR−1

n )2}. Note that at
low SNR, HD ≈ HLR. The final decisions are obtained by compar-
ing the test statistics TLR(x) and TD(x) = 〈HDx,x〉 to a threshold.

In practice, the correlations Rs and Rn required for the calcu-
lation of HD and HLR are rarely exactly known (usually, they have
to be estimated and/or modeled using physical reasoning). Unfor-
tunately, deviations of the assumed (nominal) correlations from the
true correlations can result in a dramatic performance loss.

∗Funding by FWF grant P15156.
1All random processes are assumed to be zero-mean.
2The correlation operator Rx of a random process x(t) is the linear oper-

ator whose kernel equals the correlation function rx(t, t ′) = E{x(t)x∗(t ′)}.

p-point Uncertainty Classes. Instead of requiring that the cor-
relations Rs, Rn be exactly known, a reduced-detail prior knowl-
edge can be modeled using p-point uncertainty classes [4, 5]. Con-
sider a partition of L2(R) into mutually orthogonal subspaces Xi,
i = 1, . . . ,N, i.e.,

⊕N
i=1 Xi = L2(R) and Xi⊥X j for i 6= j. Then, the

signal and noise uncertainty classes are given by

S =
{

Rs : tr{PiRs} = si , i = 1, . . . ,N
}

,

N =
{

Rn : tr{PiRn} = ni , i = 1, . . . ,N
}

,
(4)

where Pi denotes the orthogonal projection operator on Xi and si,
ni are fixed positive numbers assumed known. Since tr{PiRx} =
E{‖Pix‖2}, these classes contain all signal and noise processes with
average subspace energies si and ni, respectively, within Xi.
Contributions. In this paper, we develop robust detectors for non-
stationary processes that belong to p-point uncertainty classes:
• we propose a robust estimator-correlator detector that replaces

the Wiener filter with a minimax robust Wiener filter (Section 2);
• we derive a maximin robust detector based on the deflection cri-

terion (Section 3);
• we provide an efficient time-frequency (TF) implementation of

both robust detectors (Section 4);
• we extend the robust detectors to allow for signal-adaptive oper-

ation without requiring any prior knowledge (Section 4).
Simulation results illustrate the performance of our detectors (Sec-
tion 5). The proposed robust detection schemes have the advantage
of i) having (almost) constant performance within the uncertainty
classes; ii) requiring little prior knowledge that can be estimated
reliably; and iii) allowing for highly efficient (signal-adaptive) on-
line implementation. Our results are related to previous work on
minimax robust detection and estimation in [4, 6–8].

2. ROBUST ESTIMATOR-CORRELATOR DETECTOR

The formulation of a detector that has robust (stable) performance
within the p-point uncertainty classes S , N in (4) is difficult in
general since the usual performance criteria (detection and false
alarm probability) depend highly nonlinearly on the correlations Rs
and Rn. We thus first consider an ad hoc approach that is motivated
by the estimator-correlator interpretation of TLR(x) in (1) and by
minimax robust nonstationary Wiener filters [4].

Assume that signal and noise belong to the uncertainty classes
S , N in (4), with known subspace energies si, ni. The minimax
robust Wiener filter optimizes the worst-case MSE within S , N ,

HR
W , argmin

H
max
Rs∈S
Rn∈N

E{‖s−Hx‖2} . (5)

The solution for the robust Wiener filter was obtained in [4] as

HR
W =

N

∑
i=1

si

si +ni
Pi . (6)

It has the advantage of achieving the same MSE E{‖s−HR
Wx‖2}=

∑N
i=1

sini
si+ni

for all processes within the uncertainty classes S , N .
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To obtain a robust detector, we start by rewriting the likeli-
hood ratio detector (1) in its estimator-correlator form, TLR(x) =
〈R−1

n ŝ,x〉. Here, ŝ(t) = (HWx)(t) is the MMSE estimate of s(t)
obtained with the Wiener filter HW = Rs(Rs + Rn)

−1 [1]. Thus,
TLR(x) is obtained by correlating the observation x(t) with the sig-
nal estimate ŝ(t) (with R−1

n as weight). This estimator-correlator
structure suggests to replace the Wiener filter HW with the robust
Wiener filter HR

W in (6) to “robustify” TLR(x). Unfortunately, the
test statistic additionally involves the unknown noise correlation.
However, (6) suggests that robustness is achieved by replacing the
operator algebra involving Rs, Rn with the scalar algebra involving
si, ni. Motivated by this observation, we propose the test statistic

T R
LR(x) = 〈HR

LRx,x〉 , with HR
LR ,

N

∑
i=1

si

ni(si +ni)
Pi .

We will refer to T R
LR(x) as robust estimator-correlator detector. It

can alternatively be written as

T R
LR(x) =

N

∑
i=1

si

ni(si +ni)
xi , with xi , 〈Pix,x〉 = ‖Pix‖2. (7)

Simulation results indicated that T R
LR(x) is indeed more robust than

TLR(x) (cf. Section 5). A property supporting this claim is

E1
{

T R
LR(x)

}

− E0
{

T R
LR(x)

}

=
N

∑
i=1

s2
i

ni(si +ni)
, (8)

valid for Rs ∈ S , Rn ∈ N . In the sense of (8), T R
LR(x) achieves

constant separation of the hypotheses H0 and H1.

3. MAXIMIN ROBUST DEFLECTION DETECTOR

We next consider an alternative to the robust estimator-correlator
detector that is based on the deflection criterion in (2) [6, 7]. In a
sense, our results are nonstationary extensions of [8]. For technical
reasons, we introduce the modified p-point noise uncertainty class

N ′ =
{

Rn : tr{PiRnPjRn} = n2
i δi j , i, j = 1, . . . ,N

}

, (9)

with prescribed numbers n2
i . Note that tr{PiRnPjRn} = ‖PiRnPj‖2

and PiRnPj = RPin,Pjn is the cross-correlation operator of the noise
subspace components (Pin)(t) and (Pjn)(t). Thus, (9) means that
different noise subspace components are uncorrelated and the en-
ergy (squared Hilbert-Schmidt norm [2]) of the correlation operator
RPin = PiRnPi of the noise subspace component (Pin)(t) equals n2

i .
Analogous to the minimax robust Wiener filter (5), the maximin

robust deflection detector is defined as T R
D (x) = 〈HR

Dx,x〉 with [6, 7]

HR
D , argmax

H
min
Rs∈S

Rn∈N ′

d2(H;Rs,Rn) . (10)

Thus, HR
D maximizes the worst-case deflection within S , N ′. The

usual approach of finding least favorable correlations that solve the
dual problem (i.e., in our case minimize d2

max(Rs,Rn)) and design-
ing the optimal filter for the resulting least favorable priors [4, 6] is
not feasable since d2(H;Rs,Rn) is no convex cost function [6, 7].

Alternatively, one can try to find a detection filter HR
D and cor-

relations RR
s , RR

n that solve the saddle point problem

d2(H;RR
s ,RR

n ) ≤ d2(HR
D;RR

s ,RR
n ) ≤ d2(HR

D;Rs,Rn) , (11)

where the inequalities are to hold for all self-adjoint H and all Rs ∈
S , Rn ∈ N ′. The left-hand inequality is satisfied by chosing HR

D =

(RR
n )−1RR

s (RR
n )−1 (cf. (3)). The right-hand inequality implies that

when using HR
D, worst performance is attained for RR

s , RR
n , i.e., HR

D
performs better for all correlations Rs ∈ S , Rn ∈ N ′ than for those
it was designed with. Eq. (11) thus implies that HR

D is the minimax

robust detection filter in (10) [6, 7]. We caution the reader, however,
that a robust detection filter obtained according to (10) does not
necessarily satisfy the saddle point condition (11).

It remains to find correlations RR
s , RR

n such that the right-hand
inequality in (11) is satisfied with HR

D = (RR
n )−1RR

s (RR
n )−1. This

is done in the appendix, leading to the following result:

Theorem 1. The robust detection filter defined by (10) is given by

HR
D =

N

∑
i=1

si

n2
i

Pi.

For all Rs ∈ S , Rn ∈ N ′, it achieves the same deflection,

d2(HR
D;Rs,Rn) =

N

∑
i=1

s2
i

n2
i

.

With xi as in (7), the corresponding robust detection statistic is

T R
D (x) =

N

∑
i=1

si

n2
i

xi . (12)

Discussion. The test statistics of the robust estimator-correlator
detector (7) and the robust deflection detector (12) have a similar
structure: they are weighted averages of the observation’s subspace
energies xi. Furthermore, both detection filters HR

D and HR
LR can be

written as H = ∑N
i=1 hi Pi (leading to the same efficient implementa-

tion in Section (4)) with hD
i = si

n2
i

and hLR
i = si

ni(si+ni)
. In accordance

with the prior knowledge specified by the uncertainty classes, both
detectors treat signal components within the same subspace Xi alike
and ignore correlations of signal components within different sub-
spaces. Finally, it is seen that in the robust detection filters, the
operator algebra involving Rs, Rn is replaced by a simple scalar al-
gebra involving the subspace energies si, ni. This is advantageous
with regard to the computational complexity and numerical stabil-
ity of practical implementations.

4. TF IMPLEMENTATION OF ROBUST DETECTORS

We next present a physically intuitive choice of the subspace par-
tition underlying the uncertainty classes S , N , and N ′. This sub-
space partition is based on local cosine bases (LCB) [9, 10].

LCB Subspaces. We choose3 Xk,l = span
{

u(1)
k,l (t), . . . ,u(M)

k,l (t)
}

,
k ∈ Z, l ∈ N0, with the LCB functions

u(m)
k,l (t) , wk(t)

√

2
Tk

cos

(

2(lM +m)−1
2Tk

π(t−tk)

)

.

Here, the tk define a partition of the time axis into disjoint inter-
vals [tk, tk+1] of duration Tk = tk+1 − tk. Furthermore, wk(t) is a
window associated to the kth interval [tk, tk+1] (for details see [9]).
Thus, any partition {tk}k∈Z

of the time axis corresponds to a parti-
tion {Xk,l}k∈Z,l∈N0

into M-dimensional subspaces. Since the sub-
space Xk,l can be shown [10] to be supported within the TF region
[tk, tk + Tk]× [lMFk,(l + 1)MFk] of area M, the subspace partition
{Xk,l}k∈Z,l∈N0

corresponds to a rectangular tiling of the TF plane.

Efficient Implementation. With4 Pk,l = ∑M
m=1 u(m)

k,l ⊗ u(m)∗
k,l

denoting the orthogonal projection operators on Xk,l and sk,l , nk,l
being specified by the uncertainty classes, the robust detectors can
directly be implemented. However, the LCB subspaces allow for a
much more efficient online implementation. In particular, the LCB

coefficients 〈x,u(m)
k,l 〉 entering the subspace energies according to

xk,l = 〈Pk,lx,x〉 =
M

∑
m=1

|〈x,u(m)
k,l 〉|

2 (13)

3In the following, the index i is replaced by the double index k, l.
4The rank one operator x⊗ y∗ has the outer product x(t)y∗(t ′) as kernel.
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can be computed efficiently using fast DCT based algorithms [9].
Let us define the partial test statistic at time tk′ as Tk′(x) =

∑k′
k=−∞ ∑L

l=1 hk,l xk,l (with hD
k,l =

sk,l

n2
k,l

and hLR
k,l =

sk,l

nk,l(sk,l+nk,l)
). For

each block (interval) [tk, tk+1], the computation of the robust test
statistic can be summarized as follows:
1. compute the LCB coefficients 〈x,u(m)

k,l 〉, l ∈ N0, m = 1, . . . ,M;
2. determine the subspace energies xk,l , l ∈ N0, according to (13);
3. compute the weighted sum ∆Tk = ∑∞

l=0 hk,l xk,l ;
4. update the test statistic as Tk(x) = Tk−1(x)+∆Tk.
This procedure is repeated over the time interval of interest. Note
that only the current data block needs to be stored and processed
by this algorithm. In a discrete-time setting (i.e., after appropriate
sampling) the computational complexity of the update of the test
statistic in the kth interval can be shown to be O(Lk logLk) with Lk
denoting the number of signal samples in the kth block (interval).

Signal-Adaptive Implementation. We finally consider a signal-
adaptive implementation of our robust detectors that incorporates
the estimation of the prior knowledge (i.e., of sk,l , nk,l). For sim-
plicity, we restrict to the case of stationary white noise, Rn = N0 I,
with known N0. More general situations can be treated analogous
to [10]. Our goal is now to augment the previous LCB based im-
plementation by a reliable estimation of the subspace energies sk,l
and by that the estimation of the detection filter coefficients hk,l .

Let us assume that H1 is in force, i.e., x(t) = s(t) + n(t). In
that case, E{xk,l} = sk,l + nk,l with nk,l = N0M. This suggests
xk,l −N0M as en estimate of sk,l . Since sk,l ≥ 0, a better estimate is
obviously given by

ŝk,l = max{0,xk,l −N0M}. (14)

Similar to [10], it can be shown that the variance of this estimate
typically decreases inversely proportional with the subspace dimen-
sion M. Thus, the estimation of these subspace energies typically is
statistically much more stable than, e.g., the estimation of the cor-
relation operator Rs required for the nominally optimum detectors.

If H0 is in force, i.e., x(t) = n(t), (14) will lead to a systematic
under-estimation of sk,l . However, this will result in a test statistic
that is even smaller than with the ideal sk,l , and thus will typically
not affect performance adversely (i.e., the false alarm probability
will not increase noticeably). Using the estimate (14) to calculate
the filter coefficients hk,l results in

ĥD
k,l =

max{0,xk,l −N0M}
N2

0 M
= max

{

0,
xk,l

N2
0 M

− 1
N0

}

ĥLR
k,l =

max{0,xk,l −N0M}
N0M xk,l

= max
{

0,
1

N0M
− 1

xk,l

}

With these filter coefficients, the robust test statistics equal

T R
D (x) =

∞

∑
k=−∞

∞

∑
l=0

fD(xk,l) , T R
LR(x) =

∞

∑
k=−∞

∞

∑
l=0

fLR(xk,l) ,

where fD(xk,l) = hD
k,l xk,l = 1

N0
max

{

0,
x2

k,l
N0M −xk,l

}

and fLR(xk,l) =

hLR
k,l xk,l = max

{

0,
xk,l

N0M − 1
}

are soft-thresholding functions with
f·(xk,l) = 0 for xk,l < N0M. Thus, both detectors discard signal
components with corresponding subspace energy xk,l below the av-
erage (i.e., expected) noise level of N0M. With regard to implemen-
tation, the update of the test statistic in step 3 is now computed as
∆Tk = ∑∞

l=0 f·(xk,l) with essentially the same costs.

5. SIMULATION RESULTS

Experiment 1. To illustrate the performance of the proposed ro-
bust detectors, we prescribed nominal nonstationary second-order
statistics R0

s , R0
n and calculated the corresponding optimal detec-

tion filter HD. The uncertainty classes S , N ′ were constructed by
using orthogonal projection operators Pi that correspond to regular
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Figure 1: (a) Deflection and (b) detection probability of nominal
and robust detectors versus SNR; (c) deflection and (d) detection
probability of nominal and robust detectors versus subspace dimen-
sion M. In (b) and (d), the false alarm probability was set to 0.01.

rectangular partitions of the TF plane and choosing si = tr{PiR0
s},

n2
i = ‖PiR0

nPi‖2 such that R0
s ∈ S and R0

n ∈ N ′. We then com-
puted the robust detection filter HR

D as well as the “saddle point”
correlations RR

s , RR
n .

Performance of HD and HR
D was assessed by evaluating (2).

leading to the deflection versus SNR curve in Fig. 1(a) (here, the
dimension of all subspaces Xi was M = 8, SNR was varied sim-
ply by scaling R0

s ). Obviously, the best deflection is achieved by
HD if the actual correlations equal the nominal correlations. How-
ever, for the saddle point correlations, the deflection of HD is dra-
matically reduced (the worst-case deflection of HD within S , N ′
might be even smaller). In contrast, the deflection achieved by
the HR

D is independent of the actual correlations and lies between
d2(HD;R0

s ,R
0
n) and d2(HD;RR

s ,RR
n ). This advantage of the robust

detector HR
D is even more pronounced in Fig. 1(b) that shows cor-

responding power curves, i.e., probability of detection Pd versus
SNR at fixed false alarm rate of 0.01 (these curves were obtained
by Monte-Carlo simulations involving 5000 normal distributed re-
alizations). At SNR= −2 dB the detection probability of HD may
drop from 0.97 to 0.29 while HR

D maintains a detection probability
of 0.8 (note that the detection probability of the robust detector is
not constant within the uncertainty classes). We conclude that HR

D
achieves a significant gain over HD in case of adverse operating
conditions while loosing little at nominal operating conditions.

Figs. 1(c) and (d) show the deflection and detection probability
of HD and HR

D versus the subspace dimension M for SNR=1 dB.
It is seen that the performance variation of the optimum filter HD
increases with increasing M. While the robust filter performs much
better than HD at RR

s , RR
n , the gap to HD at nominal operating con-

ditions also grows noticeably with increasing M.
We note that qualitatively similar results (not shown due to lack

of space) were obtained for the estimator-correlator detectors HLR
and HR

LR. However, HR
LR always performed worse than HR

D.

Experiment 2. We next analyze the performance of the signal-
adaptive versions of our robust detectors using LCB subspaces. The
signal process was modeled as s(t) = s0(t − t0)e j2π f0t . Here, s0(t)
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Figure 2: Detection probability of HR
D, HR

LR, and energy detec-
tor versus (a) SNR and (b) subspace dimension M (the false alarm
probability was 0.01).

is a Gaussian random process consisting of an initial short broad-
band component followed by a longer narrowband component and
t0 and f0 are unknown time and frequency offsets. The noise was
Gaussian, stationary, and white. SNR was varied between −6 dB
and 3 dB. The only prior knowledge available is the noise power
N0, usually necessitating the use of a simple energy detector.

We simulated our signal-adaptive robust detectors with equal
block lengths (duration of LCB basis functions) of Lk = L = 32,
64, and 128, and subspace dimensions M between 2 and L. The
power curves obtained using Monte Carlo simulations involving
4096 realizations are shown in Fig. 2(a) for various block lengths
and subspace dimensions. It is seen that HR

D outperforms HR
LR and

both robust detectors outperform the energy detector (by as much
as ≈2dB in the case of HR

D). Furthermore, the curves suggest that
the best performance is achieved for L = 64 and M = 8. Indeed,
as can be seen from Fig. 2(b), which shows detection probability
Pd versus M, the optimum subspace dimension in case of L = 64 is
M = 8 for HR

D and M = 16 for HR
LR. The existence of an optimum

subspace dimension is due to the fact that detectors with small M
suffer from large estimation variance in the ŝk,l whereas large M
results in a significant loss of TF resolution.

6. CONCLUSIONS

We considered robust detection for signal and noise processes be-
longing to so-called p-point uncertainty classes. We proposed a ro-
bust estimator-correlator detector based on an ad hoc approach and
we derived a maximin robust detector based on the deflection crite-
rion. For uncertainty classes defined in terms of local cosine bases,
both robust detectors allow for a computationally very efficient im-
plementation. This implementation can be augmented to allow for
signal-adaptive operation without requiring any prior knowledge.
Theoretical and numerical results illustrated the robustness of our
detector under a variety of operating conditions.

APPENDIX: PROOF OF THEOREM 1
We first exhibit (non-unique) correlations RR

s , RR
n and a correspond-

ing detection filter HR
D that satisfy the saddle-point inequalities (11).

Consider correlations RR
s ,RR

n constructed according to

RR
s ,

N

∑
i=1

Rs,i, RR
n ,

N

∑
i=1

Rn,i

where Rs,i, Rn,i are positive semi-definite operators with range Xi

that satisfy n2
i Rs,i = si R2

n,i or, equivalently,

ni R1/2
s,i =

√
si Rn,i . (15)

Rs,i and Rn,i can always be normalized such that RR
s ∈ S , RR

n ∈ N ′.
Starting from (3), the deflection-optimal detection filter HR

D for
RR

s , RR
n can be developed as (superscript # denotes pseudo-inverse)

HR
D =

(

RR
n
)−1RR

s
(

RR
n
)−1

=

[ N

∑
i=1

Rn,i

]−1 N

∑
j=1

Rs, j

[ N

∑
k=1

Rn,k

]−1

=
N

∑
i=1

R#
n,i

N

∑
j=1

Rs, j

N

∑
k=1

R#
n,k =

N

∑
i=1

R#
n,iRs,iR#

n,i ,

where we used the fact that by construction R#
n,i Rs, j R#

n,k = 0 unless
i = j = k. Now inserting (15) yields

HR
D =

N

∑
i=1

( ni√
si

R1/2
s,i

)#
Rs,i

( ni√
si

R1/2
s,i

)#

=
N

∑
i=1

si

n2
i

R#/2
s,i Rs,iR

#/2
s,i =

N

∑
i=1

si

n2
i

Pi .

Note that by definition HR
D and RR

s , RR
n satisfy the left-hand in-

equality in (11). To prove the right-hand side inequality of (11), we
next consider the deflection achieved with HR

D. For all Rs ∈ S , the
numerator of d2(HR

D;Rs,Rn) equals

tr2{HR
DRs} = tr2

{ N

∑
i=1

si

n2
i

PiRs

}

=

( N

∑
i=1

si

n2
i

tr{PiRs}
)2

=

( N

∑
i=1

si

n2
i

tr{PiRs}
)2

=

( N

∑
i=1

s2
i

n2
i

)2

. (16)

For all Rn ∈ N ′, the denominator of d2(HR
D;Rs,Rn) equals

tr{(HR
DRn)

2} = tr

{ N

∑
i=1

si

n2
i

Pi Rn

N

∑
j=1

s j

n2
j

Pj Rn

}

=
N

∑
i=1

N

∑
j=1

sis j

n2
i n2

j

tr{Pi RnPj Rn} =
N

∑
i=1

N

∑
j=1

sis j

n2
i n2

j

n2
i δi, j =

N

∑
i=1

s2
i

n2
i

. (17)

By combining (16) and (17), it follows that for all Rs ∈ S , Rn ∈N ′,

the deflection equals d2(HR
D;Rs,Rs) = ∑N

i=1
s2

i

n2
i
. Thus, the right-

hand inequality of (11) is satisfied with equality. Together with the
fact that (11) implies (10), this establishes Theorem 1.
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