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Abstract

In this work, tracking analysis of normalized adaptive al-

gorithms is carried out in the presence of two sources of

nonstationarites; carrier frequency o�set between trans-

mitter and receiver, and random variations in the environ-

ment. A uni�ed approach is carried out using a mixed-

norm-type error nonlinearity. Close agreement between

analytical analysis and simulation results is obtained for

the case of the NLMS algorithm, which is the only al-

gorithm considered here due to space limitations. The

results show that unlike the stationary case, the steady-

state excess-mean-square error is not a monotonically in-

creasing function of the step-size, while the ability of the

adaptive algorithm to track the variations in the environ-

ment degrades by increasing the frequency o�set.

1 Introduction

Cyclic and random system nonstationarities are com-
mon impairment in communication systems and especially
in applications that involve channel estimation, channel
equalization, and inter-symbol-interference cancellation.
Random nonstationarity is present due to variations in
channel characteristics which is true in most of the cases
particularly in the case of mobile communication environ-
ment [1]. Cyclic system nonstationarities arise in commu-
nication systems due to mismatches between the trans-
mitter and receiver carrier generator. The ability of adap-
tive �ltering algorithms to track such systems variations
are not fully understood. In this regard, a recent contribu-
tion [2] presented a �rst order analysis of the performance
of the Least Mean Squares (LMS) algorithm [3] in the
presence of the carrier frequency o�set. In [4], a general
framework for the tracking analysis of adaptive algorithms
was developed that can handle both cyclic as well as ran-
dom system nonstationarities simultaneously. The frame-
work, based on energy conversation relation [5], holds for

all adaptive algorithms whose recursion are of the form:

wn+1 = wn + �xnf(en): (1)

where f(en) denotes a general scalar function of the out-
put estimation error en, � is the step-size used in adapta-
tion of �lter coeÆcients, andwn is the vector representing
the coeÆcients of the adaptive �lter.

In so far work, the analysis of adaptive algorithms has
been restricted to only non-normalized adaptive algo-
rithms. This work presents an extension to normalized
versions, i.e., the normalized LMS algorithm [6] and the
normalized LMF algorithm [7], where a uni�ed analysis is
carried out for the case where the nonlinearity f(en) is of
the form:

f(en) = h(en)g(xn) (2)

where h(en) is a purely error nonlinearity and g(xn) is a
purely input nonlinearity. More speci�cally, the error non-

linearity considered here is of a mixed-norm type format
[8]. Under this case, the input nonlinearity is de�ned as :

g(xn) =
I

k xn k2
(3)

and the error nonlinearity is de�ned as:

h(en) = �nen + 2(1� �n)e
3

n
(4)

where I is the identity matrix, k xn k2 is the Eucledian
norm of the input sequence fxng, and �n is a time-varying
mixing parameter in the range [0, 1] so that the unimodal
character of the cost function minimized for this purpose
is preserved, and it is updated as follows [9]:

�n+1 = Æ�n + 
jpj2
n
; (5)

pn = �pn�1 + (1� �)ene
�

n�1; (6)

with Æ, �, and 
 as constants, and � denotes complex
conjugate operation. The parameters Æ and �, con�ned
to the interval [0,1], are exponential weighting parameters
that govern the averaging time constant, i.e., the quality
of estimation, and 
 > 0.
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2 System Model and

Performance Measure

In this section a general system model is presented which
includes both types of nonstationarities, that is random
and cyclic nonstationarities.
To start, consider the noisy measurement dn that arises
from a model of the form:

dn = x
T

n
w
o

n
e
j
n + �n; (7)

where �n is the measurement noise and w
o

n
is the un-

known system that is to be tracked. The multiplicative
term e

j
n accounts for a possible frequency o�set be-
tween the transmitter and receiver carriers in a digital
communication scenario. Furthermore it is assumed that
the unknown system vector wo

n
is randomly changing ac-

cording to:

w
o

n
= w

o + qn: (8)

wherewo is a �xed vector, and qn is assumed to be a zero-
mean stationary random vector process with a positive
de�nite covariance matrix Qn = E[qnq

T

n
]. Moreover, it

is also assumed that the sequence fqng is statistically in-
dependent of the sequences f�ng and fxng. Thus, from
the generalized system model given by Equations (7) and
(8), it can be seen that the e�ects of both cyclic and ran-
dom system nonstationarities are included in this system
model.
In the steady-state analysis of adaptive algorithms, an
important measure of performance is their steady-state
mean square error (MSE), which is de�ned as:

MSE = lim
n!1

E[e2
n
] (9)

= lim
n!1

E
�
[�n + x

T

n
vn]

2
	
: (10)

where vn is the weight error vector de�ned as:

vn = w
o

n
e
j
n �wn: (11)

Also of interest, is the steady-state excess-mean-square-
error (EMSE), denoted by �, and is given by:

� = lim
n!1

E
�
[xT
n
vn]

2
	
: (12)

3 Fundamental Energy Relation

The fundamental energy conservation relation [4] is pre-
sented next. Using Equation (1) and Equation (8), the
following recursion is obtained:

vn+1 = vn � �x
�

n
f(en) + cne

j
n
; (13)

where cn is de�ned as:

cn = w
o(ej
 � 1) + qn+1e

j
 � qn: (14)

Now, let's de�ne the following so-called a priori estima-
tion error, ean = x

T

n
vn and a posteriori estimation error,

epn = x
T

n
(vn+1 � cne

j
n). Then, it is very easy to show
that the estimation error and the a priori error are related
via en = ean + �n. Also, the a posteriori error is de�ned
in terms of the a priori error as follows:

epn = ean �
�

�̂n

f(en): (15)

Substituting Equation (15) into Equation(13) results into
the following update relation:

vn+1 = vn � �̂nx
�

n
[ean � epn] + cne

j
n
: (16)

By evaluating the energies of both sides of the above
equation, the following relation is obtained:

k vn+1 � cne
j
n k2 +�̂n k ean k

2=k vn k2 +�̂n k epn k
2
:

(17)

It can be seen that if 
 = 0 (i.e., no frequency o�set be-
tween the transmitter and the receiver), the above equa-
tion reduces to the basic fundamental energy relation.

4 Tracking Analysis

The energy relation (17) will be used to evaluate the
excess-mean-square error at steady state. But before
starting the analysis, �rst the following assumptions are
stated:

A1 In steady-state, the weight error vector vn takes the
generic form zne

j
n, with the stationary random
process zn independent of the frequency o�set 
.

A2 The noise �n is a zero-mean iid process, and is in-
dependent of the input process. This assumption is
justi�ed in several practical examples.

Using Equation (15), assumption A1, and taking expec-
tation of both sides of Equation (17) and the fact that at
steady state E[vn+1] = E[vn], the following relation can
be obtained:

E[�̂n k ean k
2] = 2trfQng+ k wo k2 j1� e

j
j2

�2RefE
�
q
�

n
(zn � �x

�

n
f(en)e

�j
n)
�
g

�2Ref(1� e
j
)�wo�

�E[zn � �x
�

n
f(en)e

�j
n]g

+E

h
�̂njean �

�

�̂n

f(en)j
2

i
; (18)
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which can be used to solve for the steady-state excess-
mean-square error (EMSE).

To �nd the value of z = E[zn], Equation (13) is used
where it is multiplied by the term e

�j
n and then expec-
tation is taken on both sides to get:

(1� e
j
)z = �E

�
x
�

n
f(en)e

�j
n

�
+w

o(1� e
j
);

(19)

which yields the value of z at steady-state:

z =
�

(1� ej
)

"
E[�n] + 6(1�E[�n])�

2

w

#
R

trfRg
z

+wo

=

"
I�

�
o

(1� ej
)
R

#
�1

w
o
; (20)

where 
o is de�ned as:


o =

"
E[�n] + 6E[ ��n]�

2

w

#
1

trfRg
; (21)

and ��n = (1� �n).
Ultimately, the steady-state excess-mean-square error of
the proposed algorithm, �prop, is obtained from Equation
(18):

�
prop =

2p

2p� �a

"
trfQnRg+

�op

2�
o
+

b�

2p

#
; (22)

where

p = E[�n] + 6(1�E[�n])�
2

w
; (23)

a = E[�2
n
] + 36E[ ��n

2]�4
w
+ 12E[�n]E[ ��n]�

2

w
; (24)

b = E[�2
n
]�2
w
+ 4E[ ��n

2]�6
w
+ 4E[�n]E[ ��n]�

4

w
; (25)

and

�op =
��1� e

j

��2Re

(
tr
�
W

o(I� 2Xp)
�)

: (26)

Accordingly, Equation (22) can be used to get an expres-
sion for the steady-state excess-mean-square-error of the
NLMS algorithm:

�
NLMS =

1�
2�� �2

�
(
2�trfQnRg+ �

2
�
2

w
+ �otrfRg

)

(27)

where

�o =
��1� e

j

��2Rentr�Wo(I� 2X)

�o
; (28)

and

X =

"
I� �

R

trfRg

#"
I� �

R

trfRg
� e

j

I

#
�1

: (29)

For a white Gaussian input signal, the autocorrelation of
the input signal R = �

2
x
I, and therefore:

trfRg = N�
2

x
; (30)

where N is the �lter length. Accordingly, Equations (22)
and (27), respectively, look like the following:

�
prop =

2p

2p� �a

"
�
2

x
trfQng+

b�

2p

+
N

2
�
2
x
(2N � �p)
2

2�2p2
k wo k2

#
; (31)

and

�
NLMS =

2

2� �

"
�
2

x
trfQng+

��
2
w

2

+
N

2
�
2
x
(2N � �)
2

2�2
k wo k2

#
: (32)

5 Simulation Results

The simulations are carried out for a system identi�cation
problem, where the unknown system, having a FIR model,
is given by [1:0119�j0:7589; �0:3796+j0:5059]T , while

the system characteristics are time-varying. As mentioned
earlier, only results for the NLMS algorithm are presented

to validate the theoretical �ndings, that is Equation (32),
for di�erent values of 
 and di�erent values of �.

The input signal xn to both the unknown system and
the adaptive �lter is obtained by passing a zero-mean
white Gaussian sequence through a channel that is used to
vary the eigenvalue spread of the autocorrelation matrix of
the input signal. The example considered for the sequence
fxng has an eigenvalue spread of 68.9. The signal to noise
ratio is set to be equal to 30 dB and trfQng = 10�7.

Figure 1 depicts the comparison of the theory to the
simulation results for three di�erent values of 
, i.e.,

 = 0:01, 0:02, and 0:03. As can be seen from this
�gure, close agreement between theory and simulation
results are obtained. Furthermore, it is observed from
this �gure that degradation in performance is obtained by
increasing the frequency o�set 
 and unlike the station-
ary case, the steady-state EMSE is not a monotonically
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Figure 1: Comparison between Analytical and Exper-

imental �NLMS at 
 =0.01, 
=0.02, and 
=0.03

increasing function of the step-size �, that is the steady-
state EMSE is smaller at larger values of the step-size �.
Similar behaviour is observed on Figure 2 for the case of

 = 0:002 and 
 = 0:003.

Finally, the consistency in the performance of the
steady-state excess-mean-square error of the NLMS al-
gorithm is observed on other experiments.

6 Conclusion

The analytical results of the steady-state EMSE are de-

rived for normalized adaptive algorithms in the presence
of both random and cyclic nonstationarities. The results,
for the case of the NLMS algorithm, show that unlike the
stationary case, the steady-state EMSE is not a mono-
tonically increasing function of the step-size �, while the
ability of the adaptive algorithm to track the variations
in the environment degrades by increasing the frequency
o�set 
.
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