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ABSTRACT There are several general motivations behind the use

of higher-order spectra in signal processing [7, 8, 9]: 1)
to extract information due to deviations from Gaussianness
for the characterization of stationary signals. This infor- 2)to SUPpress Ga_lussmn hoise process_and to suppress non-
. - : . Gassian noise with symmetric probability density function
mation is only sufficient for Gaussian and linear processes. . . )
. . . 3) to estimate the phase of non-Gaussian signals 4 ) to detect
Whereas, most real-life signals, such as biomedical, speech

and seismic signals may have non-Gaussian, non-linear an&nd charagtenze non-I|near|t|e§ of signals.

non-stationary properties. Higher Order Statistics (HOS) . If z(n) is a real-valued statu_Jnary ranfihom process and
are useful for the analysis of such signals. Time—FrequencyIts moments up to the orddr exist, thenk™ moment of
(TF) analysis methods have been developed to analyze thé (n) can be written as

time-varying properties of non-stationary signals. In this
work, we combine the HOS and the TF approaches, and
present a method for the calculation of a Time-Dependent E{z(n)z(n+m71)...x(n+7-1)} 1)
Bispectrum based on the positive distributed Evolutionary
Spectrum.

Power Spectral Density of a signal is calculated from the
second order statistics and provides valuable information

TTL%(’H,TQ7 ~~~7Tk71)) =

Thek?" order moment spectrum is defined as the- 1) di-
mensional Fourier transform of thg"-order moment [7].
Special cases of HOS are the third order spectrum, called
1. INTRODUCTION the Bispectrum, and the fourth order spectrum, called the

) ) ) ) ~ Trispectrum. If the process is zero mean, the second and
Power Spectral Density of signals give valuable information thirq order cumulants are identical to the second and third-
for the characterization of deterministic and random station- order moments, respectively. The Bispectrum of a station-

ary signals.Power spectrum of a signal shows the distribu—ary signal x(n) can be written as,

tion of power among signal frequency components. This

information is only sufficient for Gaussian and linear pro- B(wi,ws) = X (w1)X (w2) X * (w1 + w2) 2)
cesses and it does not show any phase relations between

frequency components. However, there are non-Gaussiatwhere

and non-linear processes in practical situations, such as bio-

medicine, oceanography, sonar, radio astronomy and sunspot  |w;| <, i=1,2 lwi +wo| <7

data where power spectrum may not give enough informa-

tion. In such cases, higher than second order statistics ofX (w) is the Fourier transform af(n). The physical signif-

the signal are used for detection of non-Gaussian and nonicance of Bispectrum becomes apparent when we express
linear properties of the signal. Higher Order Spectra (HOS), (n) as Cramer Spectral representation [3].

also known as Polyspectra, is defined [7, 8, 9] as the Fourier o

transform of higher order statistics of a stationary signal. z(n) = i/ 9" dZ (w)and 3)

HOS of a signal can be defined in terms of its moments and 21 J -0

cumulants. Moments can be very useful in the analysis of
deterministic signals whereas cumulants are of great impor-
tance in the analysis of random signals.

for all n whereZ(w) is a zero mean, complex valued process
with orthogonal increments, i.e5{dZ(w)} = 0,
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Istanbul, Project number: UDP-12/21062002. E{dZ(w1)dZ" (w2)} = 2rP(w), w; =wy = w. (4)
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and the Wold-Cramer Evolutionary Spectrum is defined as:

E{dZ(w1)dZ(w2)dZ" (w3)} S(n,w) = |H(n,w)|? (@)
— { 63(“’1’ wa)dwidwy, w1 +wz = ws; (5) In [4], we consider the following discrete-time and discrete-
’ wi +ws # ws. frequency model that is analogous to the Wold-Cramer rep-

whereP(w) is the power spectrum of the signal. It is there- resentation for the non-stationary processes.

fore apparent that the power spectrum represents the con- K-1

tribution to the mean product of two Fourier components  z(n) = Z A(n,wy)edwrm, 0<n<N-1, (8)

whose frequencies are the same, whereas the bispectrum k=0

B(wy,ws) represents the contribution to the mean product )

of three Fourier components where one frequency equalsVheréwr = 27k/K, K is the number of frequency sam-

the sum of the other two [9]. ples, andA(n,wy) is an evolutionary kernel. We have pre-
Higher order spectral methods explained above are useiously showed thatl (n, wx ) can be obtained by using con-

ful for the analysis of stationary signals. Whereas real- ventional signal representations such as the Ga!oor_ and the

world signals, such as biomedical, speech, seismic signaid/alvar transforms [4, €]. For example, the multi-window

have time-varying characteristics. Time-frequency (TF) analS@bor Expansion for a finite-support signgh) is given as

ysis methods has been developed to analyze the time-varying K11 M—1
properties of such signals. The Short-Time Fourier Trans- z(n) = 1 Z Z i,k i n e (1) 9)
form (STFT), Cohen’s Class of TF Distributions (TFDs), Loz o= 7

Positive TFDs, Affine Class of TFDs and Evolutionary Spec-

tral (ES) analysis are employed to analyze the time-varying M and K are the number of time and frequency samples
properties of a signal [1, 2]. It has been agreed that TF anal-and/ is the number of scales used to analyze the signal [4].
ysis is a very useful tool for the characterization of non- {a:m .} are the Gabor coefficient§; ,,. . } are the Gabor
stationary signals [1]. In [11, 13, 12], Higher order spec- basis functions that are obtained by shifting a single window
trum based on Wigner distribution is defined. However, function in time and frequency:

WD does not guarantee the positive spectral density. It is
explained in [16] that, a positive TF distribution is needed
B e ISTEL i th e st The yness i)
TF approaches for the higher order time-frequency analy—Obtalned by scaling a unit-energy mother windg(u) as

hi,m,k(n) = h1(n — mL) ejwk’ﬂ (10)

sis of non-stationary signals.We present a method for cal- hi(n) =22 g(2'n), i =0,1,--- , 1 — 1.
culation the Time-Dependent Bispectrum using the positive
distributed Evolutionary Spectrum. The multi-window Gabor coefficients are evaluated by
N-1
2. EVOLUTIONARY SPECTRUM AND ITS Wik = Z 2(n) 77 (n — mL) e~ 3<sn (11)
ESTIMATION n=0
A zero-mean non-stationary process x(n) may be representeyhere the analysis window;(n) is solved from the bi-
as Wold-Cramer decomposition[3]: orthogonality condition betweef; (n) and~;(n) [4]. The
evolutionary kernel is obtained by comparing the spectral
g o and the Gabor representations of the signal:
xz(n) = H(n,w) " dZ(w), 0<n<N-1,
—r 1 I-1M-1
1 Aln,wg) = Vi 2 mzz:o @i mk hi(n —mL) (12)
E[dZ(w1)dZ" (w2)] = 2—6(w1 — w9) dw 1 =1
T = 7> Ailnwr) (13)
whereH (n,w) is a slowly varying amplitude function with i=

a Fourier transform that has maximum valuewat= 0.

. . ) L Replacing for th fficientSs; ,,, 1}, ON n also wri
Since the instantaneous variancer6f) is given by eplacing for the coefficientgz;. « }, one can also write

Z

-1

E{|z(n)]?} = %/ﬂ |H (n,w)|?dw, (6) Alnwi) = ) w(l) w(n, €) e 7, (14)
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where the time-varying window is defined as 4. EXPERIMENTAL RESULTS

1 LMt . We consider a signal, composed of sinusoidal and a lin-
w(n,£) = 7 Z Z hi(n —mL) ~; (£ —mL). ear chirp components. Evolutionary spectrum is obtained
=0 m=0 using the multi-window Gabor expansion with parameters
Then the evolutionary spectrum ofn) is N =128, L = 2, K = 128, and] = 3 and given in Fig. 1.
A time-dependent Bispectrum for this signal is calculated
1 . . . . - .
S(n,wi) = — |A(n,wi)]?, and shown for two time instants: Fig. 2:at= 50 and Fig.

K 3 atn = 80. As shown, different information can be ob-
tained from the time slices of this evolutionary bispectrum

where the factot /K is used for proper energy normaliza- ) .
/ prop gy for practical signals such as EEG, ECG, and speech.

tion. We should also mention that normalizing théuw)

to unit energy, the total energy of the signal is preserved
thus justifying the use of (n, wy) as a TF representation for 5. CONCLUSIONS

x(n). FurthermoreS(n,wy) is always positive and hence, ) )

in contrast to many TFDs, can be used to obtain a time- /N this paper, we present a method for the calculation of a
dependent higher order spectra. Time-Dependent Bispectrum for discrete-time, non-stationary
signals. This method combines the advantages of higher
order statistics and time-frequency methods for the investi-
gation of non-Gaussian, non-linear signal properties. The
proposed time-varying bispectrum is obtained based on the
evolutionary spectrum which is previously connected with
atomic signal decompositions such as multi-window Gabor
expansion and the Malvar expansion. Examples show that
evolutionary bispectrum provides higher order statistical re-

R(n,m1,7) = E{z(n)z(n+m)z(n+ )} = lations in the signal as a function of time.

/ / H(n,wy)H (n+ 71, wp) H (n + 72, w3) 6. REFERENCES
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