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ABSTRACT

Power Spectral Density of a signal is calculated from the
second order statistics and provides valuable information
for the characterization of stationary signals. This infor-
mation is only sufficient for Gaussian and linear processes.
Whereas, most real-life signals, such as biomedical, speech,
and seismic signals may have non-Gaussian, non-linear and
non-stationary properties. Higher Order Statistics (HOS)
are useful for the analysis of such signals. Time-Frequency
(TF) analysis methods have been developed to analyze the
time-varying properties of non-stationary signals. In this
work, we combine the HOS and the TF approaches, and
present a method for the calculation of a Time-Dependent
Bispectrum based on the positive distributed Evolutionary
Spectrum.

1. INTRODUCTION

Power Spectral Density of signals give valuable information
for the characterization of deterministic and random station-
ary signals.Power spectrum of a signal shows the distribu-
tion of power among signal frequency components. This
information is only sufficient for Gaussian and linear pro-
cesses and it does not show any phase relations between
frequency components. However, there are non-Gaussian
and non-linear processes in practical situations, such as bio-
medicine, oceanography, sonar, radio astronomy and sunspot
data where power spectrum may not give enough informa-
tion. In such cases, higher than second order statistics of
the signal are used for detection of non-Gaussian and non-
linear properties of the signal. Higher Order Spectra (HOS),
also known as Polyspectra, is defined [7, 8, 9] as the Fourier
transform of higher order statistics of a stationary signal.
HOS of a signal can be defined in terms of its moments and
cumulants. Moments can be very useful in the analysis of
deterministic signals whereas cumulants are of great impor-
tance in the analysis of random signals.

∗This work was supported by The Research Fund of The University of
Istanbul, Project number: UDP-12/21062002.

There are several general motivations behind the use
of higher-order spectra in signal processing [7, 8, 9]: 1)
to extract information due to deviations from Gaussianness
2)to suppress Gaussian noise process and to suppress non-
Gassian noise with symmetric probability density function
3) to estimate the phase of non-Gaussian signals 4 ) to detect
and characterize non-linearities of signals.

If x(n) is a real-valued stationary random process and
its moments up to the orderk exist, thenkth moment of
x(n) can be written as

mx
k(τ1, τ2, ..., τk−1)) =

E{x(n)x(n + τ1) . . . x(n + τk−1)} (1)

Thekth order moment spectrum is defined as the(k−1) di-
mensional Fourier transform of thekth-order moment [7].
Special cases of HOS are the third order spectrum, called
the Bispectrum, and the fourth order spectrum, called the
Trispectrum. If the process is zero mean, the second and
third order cumulants are identical to the second and third-
order moments, respectively. The Bispectrum of a station-
ary signal x(n) can be written as,

B(ω1, ω2) = X(ω1)X(ω2)X∗(ω1 + ω2) (2)

where

|ωi| ≤ π, i = 1, 2 |ω1 + ω2| ≤ π

X(ω) is the Fourier transform ofx(n). The physical signif-
icance of Bispectrum becomes apparent when we express
x(n) as Cramer Spectral representation [3].

x(n) =
1
2π

∫ ∞

−∞
ejωn dZ(ω)and (3)

for all n whereZ(ω) is a zero mean, complex valued process
with orthogonal increments, i.e.,E{dZ(ω)} = 0,

E{dZ(ω1)dZ∗(ω2)} =
{

0, ω1 6= ω2;
2πP (ω), ω1 = ω2 = ω.

(4)
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and

E{dZ(ω1)dZ(ω2)dZ∗(ω3)}
=

{
B(ω1, ω2)dω1dω2, ω1 + ω2 = ω3;
0, ω1 + ω2 6= ω3.

(5)

whereP (ω) is the power spectrum of the signal. It is there-
fore apparent that the power spectrum represents the con-
tribution to the mean product of two Fourier components
whose frequencies are the same, whereas the bispectrum
B(w1, w2) represents the contribution to the mean product
of three Fourier components where one frequency equals
the sum of the other two [9].

Higher order spectral methods explained above are use-
ful for the analysis of stationary signals. Whereas real-
world signals, such as biomedical, speech, seismic signals
have time-varying characteristics. Time-frequency (TF) anal-
ysis methods has been developed to analyze the time-varying
properties of such signals. The Short-Time Fourier Trans-
form (STFT), Cohen’s Class of TF Distributions (TFDs),
Positive TFDs, Affine Class of TFDs and Evolutionary Spec-
tral (ES) analysis are employed to analyze the time-varying
properties of a signal [1, 2]. It has been agreed that TF anal-
ysis is a very useful tool for the characterization of non-
stationary signals [1]. In [11, 13, 12], Higher order spec-
trum based on Wigner distribution is defined. However,
WD does not guarantee the positive spectral density. It is
explained in [16] that, a positive TF distribution is needed
for introducing a Time-Dependent Bispectrum. This work,
we present a method where we combine the HOS and the
TF approaches for the higher order time-frequency analy-
sis of non-stationary signals.We present a method for cal-
culation the Time-Dependent Bispectrum using the positive
distributed Evolutionary Spectrum.

2. EVOLUTIONARY SPECTRUM AND ITS
ESTIMATION

A zero-mean non-stationary process x(n) may be represented
as Wold-Cramer decomposition[3]:

x(n) =
∫ π

−π

H(n, ω) ejωn dZ(ω), 0 ≤ n ≤ N − 1,

E[dZ(ω1)dZ∗(ω2)] =
1
2π

δ(ω1 − ω2) dω

whereH(n, ω) is a slowly varying amplitude function with
a Fourier transform that has maximum value atω = 0.
Since the instantaneous variance ofx(n) is given by

E{|x(n)|2} =
1
2π

∫ π

−π

|H(n, ω)|2dω, (6)

the Wold-Cramer Evolutionary Spectrum is defined as:

S(n, ω) = |H(n, ω)|2 (7)

In [4], we consider the following discrete-time and discrete-
frequency model that is analogous to the Wold-Cramer rep-
resentation for the non-stationary processes.

x(n) =
K−1∑

k=0

A(n, ωk)ejωkn, 0 ≤ n ≤ N − 1, (8)

whereωk = 2πk/K, K is the number of frequency sam-
ples, andA(n, ωk) is an evolutionary kernel. We have pre-
viously showed thatA(n, ωk) can be obtained by using con-
ventional signal representations such as the Gabor and the
Malvar transforms [4, 6]. For example, the multi-window
Gabor Expansion for a finite-support signalx(n) is given as

x(n) =
1
I

K−1∑

k=0

I−1∑

i=0

M−1∑
m=0

ai,m,k hi,m,k(n) (9)

M andK are the number of time and frequency samples
andI is the number of scales used to analyze the signal [4].
{ai,m,k} are the Gabor coefficients,{hi,m,k} are the Gabor
basis functions that are obtained by shifting a single window
function in time and frequency:

hi,m,k(n) = hi(n−mL) ejωkn (10)

whereL is the time step. The synthesis windowhi(n) is
obtained by scaling a unit-energy mother windowg(n) as

hi(n) = 2i/2 g(2in), i = 0, 1, · · · , I − 1.

The multi-window Gabor coefficients are evaluated by

ai,m,k =
N−1∑
n=0

x(n) γ∗i (n−mL) e−jωkn (11)

where the analysis windowγi(n) is solved from the bi-
orthogonality condition betweenhi(n) andγi(n) [4]. The
evolutionary kernel is obtained by comparing the spectral
and the Gabor representations of the signal:

A(n, ωk) =
1
I

I−1∑

i=0

M−1∑
m=0

ai,m,k hi(n−mL) (12)

=
1
I

I−1∑

i=0

Ai(n, ωk) (13)

Replacing for the coefficients{ai,m,k}, one can also write

A(n, ωk) =
N−1∑

`=0

x(`) w(n, `) e−jωk`, (14)
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where the time-varying window is defined as

w(n, `) =
1
I

I−1∑

i=0

M−1∑
m=0

hi(n−mL) γ∗i (`−mL).

Then the evolutionary spectrum ofx(n) is

S(n, ωk) =
1
K
|A(n, ωk)|2,

where the factor1/K is used for proper energy normaliza-
tion. We should also mention that normalizing the w(n, `)
to unit energy, the total energy of the signal is preserved
thus justifying the use ofS(n, ωk) as a TF representation for
x(n). Furthermore,S(n, ωk) is always positive and hence,
in contrast to many TFDs, can be used to obtain a time-
dependent higher order spectra.

3. EVOLUTIONARY BISPECTRUM FOR
NONSTATIONARY SIGNALS

The time-dependent Bispectrum of a zero mean non- sta-
tionary signal is defined as below [14, 15, 16]. A time-
dependent third order moment ofx(n) can be written as,

R(n, τ1, τ2) = E{x(n)x(n + τ1)x(n + τ2)} =∫ π

−π

∫ π

−π

∫ π

−π

H(n, ω1)H(n + τ1, ω2)H(n + τ2, ω3)

×ej(ω2τ1+ω3τ2) ejn(ω1+ω2+ω3)

×E{dZ(ω1)dZ(ω2)dZ(ω3)} (15)

and forω1 + ω2 + ω3 = 0 andτ1 = τ2 = 0 it reduces to

R(n, 0, 0) = E{x(n)3} =∫ π

−π

∫ π

−π

H(n, ω1)H(n, ω2)H∗(n, ω1 + ω2)dω1dω2 (16)

Hence, an Evolutionary Bispectrum is defined as:

S(n, ω1, ω2) = H(n, ω1)H(n, ω2)H∗(n, ω1 + ω2) (17)

In this paper we represent an estimation method of Evolu-
tionary Bispectrum for discrete-time non-stationary signals.
Using the multi-window Gabor expansion, the evolutionary
kernel ofx(n) is obtained from the signal by

A(n, ωk) =
N−1∑

`=0

x(`) w(n, `) e−jωk` (18)

Hence the Evolutionary Bispectrum can be estimated by

Ŝ(n, ω1, ω2) = A(n, ω1)A(n, ω2)A∗(n, ω1 + ω2) (19)

Similarly, higher than third order evolutionary spectra can
be obtained usingA(n, ωk).

4. EXPERIMENTAL RESULTS

We consider a signal, composed of sinusoidal and a lin-
ear chirp components. Evolutionary spectrum is obtained
using the multi-window Gabor expansion with parameters
N = 128, L = 2, K = 128, andI = 3 and given in Fig. 1.
A time-dependent Bispectrum for this signal is calculated
and shown for two time instants: Fig. 2 atn = 50 and Fig.
3 at n = 80. As shown, different information can be ob-
tained from the time slices of this evolutionary bispectrum
for practical signals such as EEG, ECG, and speech.

5. CONCLUSIONS

In this paper, we present a method for the calculation of a
Time-Dependent Bispectrum for discrete-time, non-stationary
signals. This method combines the advantages of higher
order statistics and time-frequency methods for the investi-
gation of non-Gaussian, non-linear signal properties. The
proposed time-varying bispectrum is obtained based on the
evolutionary spectrum which is previously connected with
atomic signal decompositions such as multi-window Gabor
expansion and the Malvar expansion. Examples show that
evolutionary bispectrum provides higher order statistical re-
lations in the signal as a function of time.
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Fig. 1. Evolutionary spectrum of the signal.

0.5
1

1.5
2

2.5
30.5

1

1.5

2

2.5

3

0

1

2

3

4

5

Frequency [rad]

Bispectrum at n=50; S(50,ω
1
,ω

2
)

Frequency [rad]

Fig. 2. Evolutionary bispectrum of the signal atn = 50.
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Fig. 3. Evolutionary bispectrum atn = 80.
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