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ABSTRACT

A method for identifying non-Gaussian AR model with
time-varying parameters is addressed. The proposed
approach is based on the application of higher-order
spectra (HOS) and wavelet analysis. To solve the
problem and identify the characteristics of the
time-varying linear system, a time-varying parametric
model is proposed as a non-Gaussian AR model. The
model coefficients that characterize the time-varying
system are the functions of time and can be represented
by a family of wavelet basis functions, having the
invariant basis coefficients. This method can well track
the changes of the model coefficients. The experimental
results show the effectiveness of the proposed approach.

1. INTRODUCTION

Many methods for system identification and parameters
estimation are exclusively based on the assumption of
stationarity and Gaussinarity of the underlying
processes. In spite of its many successful applications,
aforementioned methods do not fulfill the nonstationary
applications. Now more and more growing focus is put
on the nonstationary environments, whose non-
stationarity are closely related with many physical
world. The instantaneous information of real signals
and systems are hard to be identified and predicted.
There are many useful methods applied to nonstationary
physical situations.

The most popular approach to estimate the
nonstationary signals is to employ an adaptive
algorithm and assume that the change of the signals is
shown in [2]. Marc Lavielle solved the problem by
presuming that the process is locally stationary over a
relatively short time interval but globally nonstationary.
Then we look on this kind of signals as piece-stationary
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signals and the most important thing is to find the
instants of change [3-4]. More people construct the
nonstationary models directly: Satoru Goto present
cumulant-based methods for time-varying AR model
parameters estimation [5,6,8], but this method is limited
in certain AR parameters. A novel Bayesian formulation
is developed to identify the system parameters and
estimate the models. Other report [7] uses a wavelet
basis for the identification of time-varying (TV) system,
and TV parameters can be expanded onto a finite set of
wavelet basis sequences. Its flexibility in capturing the
system’s characteristics at different scales is at the cost
of computational complexity. Several papers [1][6][7]
involve the basis function. With the application of basis
vectors such as Legendre polynomials and Fourier
series, the TV model can be represented by a family of
basis vectors, and the basis coefficients are invariant.
We combine wavelet basis functions and the
higher-order statistics, and propose a new method to
estimate the coefficients of time-varying AR model,
which is better than former methods. Section 2 of this
paper introduces the parametric model of our method.
Section 3 represents the experimental results and
compares the method with Fourier method. Finally,
some simulations are demonstrated.

2. THE BASIC SCHEME

We build a TV linear system or TV AR(P) model to
extract the feature of the characteristics of the
nonstationary signal. When X =(X,,X,,---X ) is
a nonstationary real process, the TV parameters of the
model is employed that can be described by the
following difference equation:

x(n) = —iak (n)x(n—k)+v(n) (1)
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where v(k) is an independent identically distributed
(ii.d.) stationary, non-Gaussian process, Wwith
zero-mean and a finite nonzero cumulant. @, (n) are
the TV parameters, which can be represented by a linear
combination of a number of known functions:

q
a,(n) =Y a,u;(n) 2
j=0

where U, (n) is the orthonormal basis functions. The
TV AR coefficients are represented on the space
spanned by the basis functions. TV AR coefficients are
constants in this space. We can get a, (n) if we know
the coefficients of the functions since the functions are
all known. The model can be described as

x(n) ==Y a, (n)x(n — k) + v(n) =
ST, ((n—k)+ ()

k=1 j

3)

or
P
X(n)==> A(k).X(n-k)+V(n) “)
k=1
where
X(n) =T[u,(n)x(n),u, (n)x(n),---- Ju, (m)x(n)]"
V() = [ugv(n), uv(n),----,u,v(m)]"
A(k) =[u,a,,ua; -+ :uqak]T
where

T T
a, =laya,, akq]

The expression (4) can be evolved into a system of q+1
equations:

uy(n)x(n) = —iuo(n)af - X(n—k)+uy(n)v(n)

g (n)x() = =3 (mal - X(n— k) -+ u, (m)v(n)

u,(n)x(n) = —iuq (m)a) - X(n—k)+ u, (mv(n)

We also know that the mth order cumulants sequence
of X(n) satisfies the following recursive equation [5]:

SAKC (r,7 . 1—k)=0, 7>0 5)

We assume m=3, then (5) can be changed into :

u,(n)a | Cois Con,
ZP: u(ma, | ¢, ¢, ~0
= : : : B (6)

where ¢, = E[x,(n)x,(n+7)x,(n+7—k)]
and x;(n) is the jth element of X(n)

3. WAVELET BASIS FUNCTION

A wavelet orthonormal basis of the usual Lebesque
square integrable function space I’ satisfies the
following formula:

< !//k.n’l//l,m >= 5/([ ' 5)1;115 k)n)l)m E Z
it f ELz(R), we can get:

f(x)= ch,kl//j,k (x) (7)

j.keZ

Some kinds of wavelet basis can be chosen to
represent the AR coefficients, such as Harr and
Daubechies basis, because of their good performance in
transient change. For time series with sharp jumps or
steps, one would choose a boxcar-like wavelet function
such as the Harr and Daubechies basis. On the other
hand, we would choose a smooth function such as a
dumped cosine for smoothly varying time series. It is
the Fourier transform which is a special case of a
wavelet transform that has basis vectors defined by
trigonometric functions--sine and cosine. So we choose
Harr basis and Fourier basis respectively in the
following simulations.

It is notable that Harr basis has interesting behavior
as being capable of capturing the global as well as the
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local behavior of the TV coefficients. It consists of
scaled and translated versions of a single function.

3. RESULTS AND DISCUSSION

We assume that the AR order p=2, then:
x(n) =a,(n)x(k-1)+a,(n)x(k =1)+v(n)

where v(k) is an independent identically distributed
stationary, non-Gaussian process, whose variance
Ev'(K)]=0 and EV(K)]=B#0 .4 a k),
a,(k)} are TV AR(2) model parameters changing
abruptly in the following manner:

a,(k)=-15,a,(k)=0.8
ke[l,N/4JU[N/2+13N /4],
a,(k) =-0.9,a,(k)=0.2

ke[N/4+1,N/2]U[N3/4+1,N],

The TV process is generated with N=6000 samples
in Fig.1 and 2, which are shown by the rectangle blue
wave. Both Fourier basis and Harr basis are used to
estimate the model parameters, and compare the results
with the original values.

Both Fig.l1 and Fig.2 depict the true AR(2)
parameters a,(k) and a,(k), and the estimated
results based on Fourier basis and Harr basis,
respectively. It is important to note that the estimation
based on Harr basis responds rapidly and precisely to
the parameters’ time-variances. This finding highlights
the capacity of wavelets to identify time-variances that
may have physiologic relevance and retains parametric
identity even though model coefficients vary
continuously over the data segment studied. It can be
seen from the results that Harr basis is much better than
Fourier basis for tracking the changes of the model
coefficients. We can get the same result by the error
criterion which is estimated by minimizing a penalized
contrast function of the form [3]:

do(xvxzﬂ' X Gyt 'ap) =

SIX-YaX /N ®

i=P+1

The error of wavelet basis with d,, =1.7332 is
less than the error of Fourier basis with d, = 2.0256,
which reflect that the wavelet basis is more suitable
than the conventional method in the identification of the
TV linear systems.

4. CONCLUSION

The aim of the proposed method was to investigate the
problem of the identification of the time-varying linear
systems described by an non-Gaussian AR model. The
AR model parameters that characterize the time-varying
system are functions of time and can be represented by
a family of wavelet basis functions. A comparison
between wavelet basis and Fourier basis of
cumulants-based method is also given. The results in
the presented method show the applicability and the
effectiveness of the procedures, while some signal
processing techniques is needed to apply to minimize
the estimated error.
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Fig. 1 The estimated result of the TV a,(k). The
estimated result of Fourier basis is shown as the dotted
line, and the estimated result of Harr basis is shown as
the solid line.
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Fig. 2 The result of the estimation of the TV a, (k).
The estimated result based on Fourier basis is shown as
the dotted line, and the estimated result based on Harr
basis is shown as the solid line.
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