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ABSTRACT

A novel algorithm, robust kernel principal component
analysis (robust KPCA) is proposed in this paper based on
the research of KPCA algorithm and its robustness. This
agorithm generalizes the minimum error criteria of signal
reconstruction to feature space, which can automatically
recognize the outliers in the training sample set, and
exterminates their effects to the accuracy of the KPCA
algorithm via iterative computing. The robust KPCA
algorithm not only remains non-linearity property of
KPCA but gets better robustness and improves the
accuracy of KPCA. The simulation experiments show that
the robust KPCA algorithm developed is better than the
KPCA algorithm.

1. INTRODUCTION

Principal component analysis (PCA) agorithm is a
multivariable dtatistical analysis technique of data
compression and feature extraction. It has been widely
used in statistical analysis, pattern recognition and image
processing. However, There exist serious problems in
robustness of traditional PCA algorithm based on
eigenvalue decomposition and PCA only describes input,
which subordinate to normal distribution.

Many different improved agorithms of PCA have been
introduced, and the research of these improved agorithms
of PCA are focused on two aspects. One is how to reduce
the calculation error and poor convergence of the
agorithm for the outliers in the training set [1][2].
Another is how to reach the independence between the
output principal components when the input do not
subordinate to normal distribution.  Usualy, the
irrelevance between the principal components can be
acquired easily in the case two-order characteristics are
considered. We know that the independence is equal to
irrelevance only when the input subordinate to normal
distribution. The problems of how to select the nonlinear
function and how to combine it to the PCA have already
been studied by some researchers [4][5].

Although the KPCA algorithm is excellent, it is instable
when input samples include outliers, because there is a
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lack of considering how to recognize the outliers in the
training sample set, and how to exterminate their effectsto
the accuracy of the KPCA algorithm. Robust KPCA
agorithm is proposed in this paper based on the analysis
of KPCA algorithm and its robustness.

In the next section, we will fist review the kernel PCA
algorithm [4]. In section 3, we discuss the principle of the
robust KPCA algorithm in particular. The experiments
results on robust KPCA algorithm are given in section 4,
and we have a conclusion in section 5.

2. THE PRINCIPLE OF KPCA

We map the input x to a high dimensional feature space
F via a nonlinear function: ¢:R" > F ,x— X .

M

Assume the mapped data is centered, i.e. Z¢(Xk) =0
k=1

in the feature space F , then the covariance matrix in

M
Fis CF =|v|iZ:¢(Xi)¢(Xj)T . We now have to
i=1

find eigenvaues A" >0 and  eigenvectors

WF e F\{0} saisfying C"A" =A"WF . Al

AT #0
There

solution WF with

P(%,), -, ¢ (%)
a;(i=1---,M) such that WF :ia@(xi). Thus

lies in the span of
exist coefficients

we can obtain:

7 (90%) (%)

=ﬁiai (%) F0 X, -$(x)

k=1---,M )
Defininga M x M matrix K by

Ky = (@(x)-4(x;)). @)
So the equation (1) can be rewritten as

MAFKa = K2« . Thisisequivaent to
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MAfa = Ka ©)
Let A, > A5 >---> A, denote the eigenvalues, and
a,,a,, ,a, the corresponding complete set of

eigenvectors of the equation (3). We need to normalize the
eigenvectors in the feature space F Suppose

A #0,k=12,---,1, by virtue of (1), (2) and (3),
(W, -W,") =1 isequivalent to

M
W W) = D afaf(4(x)- (X))

i,j=1

M
=Y afafK(x,%,) =4 (¢ -a*) =1

i,j=1

k=11 @
For the purpose of principal component extraction, we
need to compute projections onto the eigenvectors WkF in
F . Let x be a test point whose projection is @(X) in
F , then the projection of @(X) onto the eigenvectors
W, are the
corresponding to

W - 4(x) = Zaik (#(x)-¢(x) (5)

nonlinear principa  components

3. ROBUST KPCAALGORITHM

The KPCA is a of the most excellent nonlinear PCA
algorithm. But KPCA dose not consider the situation of
the outliers in the input data, so the KPCA does not
eliminate outliers when used in principle component
analysis in feature space. It is relatively easy to eliminate
outliers in input space, and many scholars have proposed
several agorithms [1][2], but eliminating outliers in
feature space is much more difficult, because we can not
obtain the explicit form of the non-linear mapping

function ¢ . In order to eliminate the effect of outliers to

the algorithm, we must consider two problems. First,
whether or not the outliers in input space remain outliers
in feature space? Second, how to eliminate outliers in
feature space?

Asto the first problem, literature [5] has replied that if the
nonlinear mapping is smooth and continuous then the
topographic ordering of the data in input space will be
preserved in feature space. To solve the second problemis
actualy to establish the criterion for recognizing outliers
in feature space. The following first introduces the
criterion based on minimum error criterion of signal
reconstruction in input space, then generalizes the
criterion to feature space, and at last, establishes the robust
KPCA on the basis of the criterion.

3.1 Minimum error criteria of signal reconstruction in
input space

General principle of minimum error criteria of signa
reconstruction is: Set y=WTX as the principle
components obtained from the input N -dimension
random vector X , and U=Wy as the signa
reconstruction of input X, then €=X-U is the
reconstruction error. Define the error function J(W) as

JwW) -l =Ejx-u’  ®
As to training sample set, the estimation of the error
functionis

1< T2
JW) zﬁzuxi ~WWT x| ™
i=1

where the column vectors of W is unit vector and linear
irrelative to each other. So the goal of optimizing error
function is to at most reduce the loss to signal in the

dimension reduction. It has been proved that the W,
which the minimal J(W) corresponds to, equal to
M -dimension PCA subspace of input random vector X.

That is, the subspace made up of column vectors of W
equals to that made up of the principle components of X
[1]. Therefore, the reconstruction error criteria can be
utilized to recognize outliers.

3.2 Minimum error criteria of signal reconstruction in
feature space

In the input space, set the W made up of the firss m
principle components of input random vectors X, and

& >0 as agiven threshold. An input variable X, here
isrecognized as outliers, if

e(x) = Hxi ~WW ' x, H2 >¢ (9

Thisisthe criterion for recognizing outliersin input space.
The criterion is generalized to the feature space as
following.

Map the input space to feature space with a

non-linear function ¢ . then the signal reconstruction
error in feature space is presented by

2

&4 (%)) = [# ) ~WWTg(x,)| ©)
However, for the explicit form of the non-linear function
¢@ is unknown, we can’'t calculate the signal reconstruction

error directly. In order to compute the error of signal
reconstruction, we rewrite (9) in terms of kernel functions

K(X,X;) =8(%)-#(X;) . Infact:
ep(x)) = [p(x) ~WWTp(x,)|
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:¢(Xi)'¢(xi)_Z\N\NT¢(Xi)'¢(Xi)
+ (WWT)WWT)B(x) - $(x,)
= K(X,%X)—2WNV K (x,X)

+ (WWT)?K (X, %) (10)
Here gets the signal reconstruction error in feature space
via computing (10). On the basis of the formula, the new
robust KPCA algorithm is proposed. Although the explicit

form of non-linear function ¢ is not presented, we can

compute out directly the dot products in feature space via
the kernel function, e.g. polynomial kernel.

3.3 Robust KPCA algorithm

Utilizing the above criterion, we can only give out the
estimation of W, rather than the precise value of W .
Then we utilize the estimation of W to recognize and
eliminate the outliers, and get the more accurate
estimation of W , and repeat the procedure above. At last,
here gets the relatively accurate W via such iterative
computing. Additionally, compute the reconstruction error
of the whole training set, and set the samples with
relatively more reconstruction error as outliers.

In summary, for a given training sample set
X :{Xl,xz,m,XM}, the robust KPCA algorithm
proposed is described as following:

Stepl: Initialize the number of steps of the iterative
k=0 and setthe sample set to be processed Y = X
that is the number of outlier samples O(k) = 0;

Step2: Center the training sample set in the feature space;
Step3: Analyze the sample set with kernel PCA, and get

the estimation matrix W (K) ;

Step4: Normalize the estimation matrix W(K) in the
feature space;

Step5: According to W(K)  utilize 10 to calculate
reconstruction error of the training samples, that is

e(p(x)) = K (%, %) = 2W (KW (K)K (%, %)

1770
+ (WWT (K)2K (%,%),i=12-,M
Step6: Set the step number of iterative K=K+1,
eliminate the sample of the most reconstruction error from
the sample set X in the last step, and set the number of
outlier samples as O(k +1) = O(K) +1. Recompose
the new sample set Y to be processed with the remained
samples
Step7: If W(k +1) satisfies convergence condition, the
iterative computing ends; otherwise, jump to the step3.

The robust KPCA above mainly consider two problems:
first, which rule is selected to recognize the outliers? It is

difficult to ascertain & , If utilize threshold & to
recognize the outliers. Therefore, we predefine the number
of the outliersin the training sample set in the experiment.
In practice, although the number of outliers is unknown,
they always occupy only a little percentage in the training
sample set, such as 2%-5%. Setting the number of outliers
a little more than that of practice is generally acceptable.
Because the number of non-outlier samples is much more,
they will not affect much the accuracy of final result even
though some of non-outlier samples are recognized as
outliers and are ignored. Second, How to select kernel
function? Experiments show that different kinds of kernel
functions represent approximately the same performance
[6]. Presently, the polynomial kernels, radia basis
function kernels and sigmoid kernels are all widely used.

4. SSIMULATION EXPERIMENTS

The simulation experiments in this paper respectively
adopt KPCA algorithm and the robust KPCA algorithm to
analyze the input sample set. And two sample sets are
involved in the experiment: one has outliers and the other
dose not. The contrast results will evaluate robustness of
the KPCA and the robust KPCA. In order to get more
contrastive results, this experiment adopts the artificial
datain literature [4] and polynomial kernel.

Generate randomly 300 normally distributed 2-dimesion
sample set, which is composed of 3 clusters, indicated as
A (Fig.1); Insert randomly 3% outliers whose distribution
is quit different from the normal distribution into the
sampleset A, indicated assampleset = (Fig.2).

First apply KPCA to sample set A, Z. From Fig.1,
KPCA agorithm has very high accuracy on sample set
without outliers, and the portrayed contour reflects the
data structure quit well. The first two principle
components succeed in separating the 3 clusters, and the
following 3 principle components again separate the 3
clusters with more detail. At the same time, the
experiment illustrates that KPCA can provide abundant
principle component contrast to PCA. Fig.2 shows that
outliers have great effect on the accuracy of principle
componentsin KPCA. Therefore, for the data with outliers,
KPCA is instable. Also from Fig, 2, only 3% outlier
samples result in the problems that the first two
components can not separate the three clusters well, and
the effect to the following three components is more
serious.

For the sample set without outliers, the robust KPCA can
obtain quit accurate principle components too. For the
sample set =, utilize the improved KPCA algorithm as
Fig.3. Thisillustrates that for the first two components, the
improved KPCA algorithm has aready eliminate the
effect of noise. Therefore, the robust KPCA can obtain
the approximately precise principle components. In the
following three components, the effect of noiseisalso
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dight. In summary, the improved KPCA algorithm has
better robustness contrast to KPCA. In addition, the
simulation experiment also demonstrates that the robust
KPCA algorithm succeeds in finding out the outliers that
affect the accuracy severely, which has important
significance for signal and data processing.

5. CONCLUSION

This paper, based on the analysis of KPCA and its
robustness, generalizes minimum error principle of
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Fig. 3 analysis results of sample set including

outliers with the robust KPCA agorithm

signal reconstruction to the feature space and proposes the
adaptive robust KPCA agorithm. This agorithm remains
non-linear property of KPCA and possesses better
robustness. The simulation experiments illustrate that the
improved KPCA agorithm, contrast to the KPCA
algorithm, enhances obviously the robustness and gives
out the approximately accurate principal components. This
algorithm may be applied in data compression, feature
extraction and image processing.
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