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ABSTRACT 

 
A novel algorithm, robust kernel principal component 
analysis (robust KPCA) is proposed in this paper based on 
the research of KPCA algorithm and its robustness. This 
algorithm generalizes the minimum error criteria of signal 
reconstruction to feature space, which can automatically 
recognize the outliers in the training sample set, and 
exterminates their effects to the accuracy of the KPCA 
algorithm via iterative computing. The robust KPCA 
algorithm not only remains non-linearity property of 
KPCA but gets better robustness and improves the 
accuracy of KPCA. The simulation experiments show that 
the robust KPCA algorithm developed is better than the 
KPCA algorithm. 

 

1. INTRODUCTION 
 
Principal component analysis (PCA) algorithm is a 
multivariable statistical analysis technique of data 
compression and feature extraction. It has been widely 
used in statistical analysis, pattern recognition and image 
processing. However, There exist serious problems in 
robustness of traditional PCA algorithm based on 
eigenvalue decomposition and PCA only describes input, 
which subordinate to normal distribution.  
Many different improved algorithms of PCA have been 
introduced, and the research of these improved algorithms 
of PCA are focused on two aspects. One is how to reduce 
the calculation error and poor convergence of the 
algorithm for the outliers in the training set [1][2]. 
Another is how to reach the independence between the 
output principal components when the input do not 
subordinate to normal distribution. Usually, the 
irrelevance between the principal components can be 
acquired easily in the case two-order characteristics are 
considered. We know that the independence is equal to 
irrelevance only when the input subordinate to normal 
distribution. The problems of how to select the nonlinear 
function and how to combine it to the PCA have already 
been studied by some researchers [4][5]. 
Although the KPCA algorithm is excellent, it is instable 
when input samples include outliers, because there is a 

lack of considering how to recognize the outliers in the 
training sample set, and how to exterminate their effects to 
the accuracy of the KPCA algorithm. Robust KPCA 
algorithm is proposed in this paper based on the analysis 
of KPCA algorithm and its robustness.  
In the next section, we will fist review the kernel PCA 
algorithm [4]. In section 3, we discuss the principle of the 
robust KPCA algorithm in particular. The experiments 
results on robust KPCA algorithm are given in section 4, 
and we have a conclusion in section 5. 
 

2. THE PRINCIPLE OF KPCA 
 
We map the input x to a high dimensional feature space 
F via a nonlinear function: , . 

Assume the mapped data is centered, i.e.  

in the feature space 
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Defining a MM × matrix K  by  

))()(( jiij xxK φφ ⋅= .           (2) 
So the equation (1) can be rewritten as 

. This is equivalent to ααλ 2KKM F =
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                   (3) ααλ KM F =
Let  denote the eigenvalues, and 

 the corresponding complete set of 
eigenvectors of the equation (3). We need to normalize the 
eigenvectors in the feature space 
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For the purpose of principal component extraction, we 
need to compute projections onto the eigenvectors in F

kW
F . Let x be a test point whose projection is )(xφ  in 
F , then the projection of )(xφ  onto the eigenvectors 

 are the nonlinear principal components 
corresponding to  
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3. ROBUST KPCA ALGORITHM 

 
The KPCA is a of the most excellent nonlinear PCA 
algorithm. But KPCA dose not consider the situation of 
the outliers in the input data, so the KPCA does not 
eliminate outliers when used in principle component 
analysis in feature space. It is relatively easy to eliminate 
outliers in input space, and many scholars have proposed 
several algorithms [1][2], but eliminating outliers in 
feature space is much more difficult, because we can not 
obtain the explicit form of the non-linear mapping 
function φ . In order to eliminate the effect of outliers to 
the algorithm, we must consider two problems: First, 
whether or not the outliers in input space remain outliers 
in feature space? Second, how to eliminate outliers in 
feature space? 
As to the first problem, literature [5] has replied that if the 
nonlinear mapping is smooth and continuous then the 
topographic ordering of the data in input space will be 
preserved in feature space. To solve the second problem is 
actually to establish the criterion for recognizing outliers 
in feature space. The following first introduces the 
criterion based on minimum error criterion of signal 
reconstruction in input space, then generalizes the 
criterion to feature space, and at last, establishes the robust 
KPCA on the basis of the criterion. 

3.1 Minimum error criteria of signal reconstruction in 
input space 
 
General principle of minimum error criteria of signal 
reconstruction is: Set  as the principle 
components obtained from the input -dimension 
random vector 

xWy T=
n

x , and  as the signal 
reconstruction of input 

Wyu =
x , then uxe −=

(J
 is the 

reconstruction error. Define the error function  as )W
22)( uxEeEWJ −==         (6) 

As to training sample set, the estimation of the error 
function is 
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where the column vectors of  is unit vector and linear 
irrelative to each other. So the goal of optimizing error 
function is to at most reduce the loss to signal in the 
dimension reduction. It has been proved that the W , 
which the minimal  corresponds to, equal to 

-dimension PCA subspace of input random vector 

W

)(WJ
m x . 
That is, the subspace made up of column vectors of  
equals to that made up of the principle components of 

W
x  

[1]. Therefore, the reconstruction error criteria can be 
utilized to recognize outliers.  
 
3.2 Minimum error criteria of signal reconstruction in 
feature space 
 
In the input space, set the  made up of the first  
principle components of input random vectors 

W m
x , and 

0>ε  as a given threshold. An input variable  here 
is recognized as outliers, if 
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This is the criterion for recognizing outliers in input space.  
The criterion is generalized to the feature space as 
following. 

Map the input space to feature space with a 
non-linear function φ . then the signal reconstruction 
error in feature space is presented by 

( ) 2
)()()( i

T
ii xWWxxe φφφ −=         (9) 

However, for the explicit form of the non-linear function 
φ is unknown, we can’t calculate the signal reconstruction 
error directly. In order to compute the error of signal 
reconstruction, we rewrite (9) in terms of kernel functions 

. In fact: )()(),( jiji xxxx φφ ⋅=K

( ) 2
)()()( j

T
ii xWWxxe φφφ −=  

VI - 622

➡ ➡



)()(2)()( ii
T

ii xxWWxx φφφφ ⋅−⋅=   

)()())(( ii
TT xxWWWW φφ ⋅+  

),(2),( ii
T

ii xxKWWxxK −=   

  +                       (10) ),()( 2
ii

T xxKWW
Here gets the signal reconstruction error in feature space 
via computing (10). On the basis of the formula, the new 
robust KPCA algorithm is proposed. Although the explicit 
form of non-linear function φ  is not presented, we can 
compute out directly the dot products in feature space via 
the kernel function, e.g. polynomial kernel. 
 
3.3 Robust KPCA algorithm 
 
Utilizing the above criterion, we can only give out the 
estimation of , rather than the precise value of W . 
Then we utilize the estimation of W to recognize and 
eliminate the outliers, and get the more accurate 
estimation of , and repeat the procedure above. At last, 
here gets the relatively accurate W  via such iterative 
computing. Additionally, compute the reconstruction error 
of the whole training set, and set the samples with 
relatively more reconstruction error as outliers. 

W

W

In summary, for a given training sample set 
, the robust KPCA algorithm 

proposed is described as following: 
{ MxxxX ,,, 21 L= }

Step1: Initialize the number of steps of the iterative 
，and set the sample set to be processed 0=k XY = ，

that is the number of outlier samples ; 0)( =kO
Step2: Center the training sample set in the feature space; 
Step3: Analyze the sample set with kernel PCA, and get 
the estimation matrix ; )(kW
Step4: Normalize the estimation matrix W  in the 
feature space; 

)(k

Step5: According to W ，utilize （10）to calculate 
reconstruction error of the training samples, that is 
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Step6: Set the step number of iterative 1+= kk , 
eliminate the sample of the most reconstruction error from 
the sample set  in the last step, and set the number of 
outlier samples as . Recompose 
the new sample set  to be processed with the remained 
samples； 

X
1)()1( +=+ kOkO

Y

Step7: If  satisfies convergence condition, the 
iterative computing ends; otherwise, jump to the step3. 

)1( +kW

The robust KPCA above mainly consider two problems: 
first, which rule is selected to recognize the outliers? It is 

difficult to ascertain ε , If utilize threshold ε  to 
recognize the outliers. Therefore, we predefine the number 
of the outliers in the training sample set in the experiment. 
In practice, although the number of outliers is unknown, 
they always occupy only a little percentage in the training 
sample set, such as 2%-5%. Setting the number of outliers 
a little more than that of practice is generally acceptable. 
Because the number of non-outlier samples is much more, 
they will not affect much the accuracy of final result even 
though some of non-outlier samples are recognized as 
outliers and are ignored. Second, How to select kernel 
function? Experiments show that different kinds of kernel 
functions represent approximately the same performance 
[6]. Presently, the polynomial kernels, radial basis 
function kernels and sigmoid kernels are all widely used. 
 

4. SIMULATION EXPERIMENTS 
 
The simulation experiments in this paper respectively 
adopt KPCA algorithm and the robust KPCA algorithm to 
analyze the input sample set. And two sample sets are 
involved in the experiment: one has outliers and the other 
dose not. The contrast results will evaluate robustness of 
the KPCA and the robust KPCA. In order to get more 
contrastive results, this experiment adopts the artificial 
data in literature [4] and polynomial kernel.  
Generate randomly 300 normally distributed 2-dimesion 
sample set, which is composed of 3 clusters, indicated as 
Λ (Fig.1); Insert randomly 3% outliers whose distribution 
is quit different from the normal distribution into the 
sample set Λ , indicated as sample set  (Fig.2).  Ξ
First apply KPCA to sample set , . From Fig.1, 
KPCA algorithm has very high accuracy on sample set 
without outliers, and the portrayed contour reflects the 
data structure quit well. The first two principle 
components succeed in separating the 3 clusters, and the 
following 3 principle components again separate the 3 
clusters with more detail. At the same time, the 
experiment illustrates that KPCA can provide abundant 
principle component contrast to PCA. Fig.2 shows that 
outliers have great effect on the accuracy of principle 
components in KPCA. Therefore, for the data with outliers, 
KPCA is instable. Also from Fig, 2, only 3% outlier 
samples result in the problems that the first two 
components can not separate the three clusters well, and 
the effect to the following three components is more 
serious.  

Λ Ξ

For the sample set without outliers, the robust KPCA can 
obtain quit accurate principle components too. For the 
sample set Ξ , utilize the improved KPCA algorithm as 
Fig.3. This illustrates that for the first two components, the 
improved KPCA algorithm has already eliminate the 
effect of noise.  Therefore, the robust KPCA can obtain 
the approximately precise principle components. In the 
following three components, the effect of noise is also  
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Fig. 1 analysis results of non-outliers sample 

 set with the KPCA algorithm 
 

 

 
Fig. 2 analysis results of sample set including 

outliers with the KPCA algorithm 
 
slight. In summary, the improved KPCA algorithm has 
better robustness contrast to KPCA. In addition, the 
simulation experiment also demonstrates that the robust 
KPCA algorithm succeeds in finding out the outliers that 
affect the accuracy severely, which has important 
significance for signal and data processing. 
 

5. CONCLUSION 
 
This paper, based on the analysis of KPCA and its 
robustness, generalizes minimum error principle of 

 

 
Fig. 3 analysis results of sample set including 

outliers with the robust KPCA algorithm 
 
signal reconstruction to the feature space and proposes the 
adaptive robust KPCA algorithm. This algorithm remains 
non-linear property of KPCA and possesses better 
robustness. The simulation experiments illustrate that the 
improved KPCA algorithm, contrast to the KPCA 
algorithm, enhances obviously the robustness and gives 
out the approximately accurate principal components. This 
algorithm may be applied in data compression, feature 
extraction and image processing. 
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