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ABSTRACT 

The recursive least squares (RLS) adaptive algorithm is 
combined with the �adaptive threshold nonlinear algorithm� 
(ATNA) proposed by the author, to derive RLS-ATNA, 
resulting in improvement of the convergence rate of the ATNA 
that offers robust adaptive filters in impulse noise environments. 
For application of the RLS-ATNA to identification of 
random-walk modeled nonstationary systems, an adaptive 
forgetting factor (AFF) control algorithm is proposed that 
further improves the tracking performance in the steady state. 
Through analysis and experiments, the effectiveness of the 
AFF-RLS-ATNA is demonstrated. Fairly good agreement 
between the simulation and the theoretically calculated 
convergence validates the analysis.  

1. INTRODUCTION 

Among the many types of tap weight adaptation algorithm for 
adaptive filters, the LMS algorithm usually exhibits faster 
convergence than the other LMS-derived algorithms, when 
required estimation accuracy is to be realized. The RLS 
algorithm considerably accelerates the convergence of the LMS 
algorithm for a colored reference input [1, Chap 8].  

It is known that the LMS algorithm is quite vulnerable to 
disturbances, e.g., impulse noise. One of the practical solutions 
is to use the sign algorithm. However, the sign algorithm 
converges much slower than the LMS algorithm as mentioned 
above. The author proposed an algorithm called �adaptive 
threshold nonlinear algorithm� (ATNA) to meet these 
contradicting requirements, namely, fast convergence and 
robustness against impulse noise [2].  

It is expected that the convergence rate of the ATNA may be 

improved if it is combined with the RLS algorithm. This paper 
first derives �recursive least squares adaptive threshold 
nonlinear algorithm� (RLS-ATNA). Weng et al. [3] propose 
and analyze an RLS algorithm with an amplitude-limiting 
nonlinear function of the error. Zou et al. [4] propose a 
recursive least M-estimate (RLM) algorithm to mitigate the 
adverse effects due to impulse noise.  

When the RLS-ATNA is used to identify nonstationary 
systems, a fixed forgetting factor for the RLS algorithm may 
not provide the optimum tracking performance. In fact, for a 
nonstatonarity that is modeled with a random walk, we find 
that there exists an optimum value of the forgetting factor that 
minimizes the steady-state error. This paper further proposes 
and analyzes a gradient-based adaptive forgetting factor (AFF) 
control algorithm to be combined with the RLS-ATNA. The 
new AFF control algorithm gives the nearly optimum 
forgetting factor to make the steady-state error close to its 
minimum attainable value. The schematic diagram of the 
adaptive filtering system equipped with the AFF-RLS-ATNA is 
illustrated in Fig. 1.  

2. ADAPTIVE FORGETTING FACTOR RLS 
ADAPTIVE THRESHOLD NONLINEAR 

ALGORITHM 

2.1 Formulation of the RLS-ATNA  
In this subsection, we formulate �recursive least squares 
adaptive threshold nonlinear algorithm� (RLS-ATNA) by 
combining the RLS algorithm with the ATNA proposed by the 
author [2].  

The update equations for the RLS-ATNA are given by the 
following.  

c(n +1) = c(n) +αc f [e(n) ; A(n), m] g(n),  (1) 
g(n) = P(n) a(n) / [λ+aT(n) P(n) a(n)], (2) 

and 
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Fig. 1 Schematic diagram for the AFF-RLS-ATNA. 

P(n +1) = (1 /λ)[ P(n) ‒ g(n) aT(n) P(n) ],  (3) 
where n is the time instant, c(n) is the tap weight vector (N 
taps), a(n) is the filter reference input vector (length N), e(n) is 
the error signal, A(n) is the threshold parameter, g(n) is the 
Kalman gain, P(n) is the estimator for the inverse covariance 
matrix of the reference input,λ is the forgetting factor, and 
( · )T denotes the transpose of a vector or a matrix. The step 
sizeαc is being introduced for generality, though it is usually 
set to 1. The nonlinear function f (e ; A, m) is specifically 
defined as follows.  

f (e ; A, m) = e / [ 1 + (|e| / A) m ],  
where A > 0 and m = 2, 4, 8, 16, � . For m→∞, the function 
becomes �truncated linear�[2].  

The threshold A(n) is updated as follows, using a leaky 
accumulator having the absolute value of the error as its input.  

A(n +1) = ( 1 —ρA) A(n) +ρA MA | e(n) |, (4) 
whereρA is the leakage factor and MA is the multiplier.  

2.2 Proposed Adaptive Forgetting Factor Control 
 Algorithm  

The proposed gradient adaptive control algorithm for the 
forgetting factor in identification of nonstationary systems is 
given by the following equations [5].  

λ(n) = 1 —λc (n)  (5) 
and 

λc (n +1) =λc (n) +ρG f [e(n +1) ; A(n +1), m] 
× f [e(n) ; A(n), m] aT(n +1) g(n) /λc (n), (6) 

whereλc (n) is the complementary forgetting factor at time n 
andρG is the coefficient for adaptation. The division byλc (n) 
on the right-hand-side of (6) is for a scaling purpose. Since the 
amplitude-limiting nonlinear function f (e ; A, m) is involved, 
the control of the forgetting factor is also expected to be robust 
against impulse noise.  

2.3 Optimum Forgetting Factor and Minimum  
 Steady-State Excess Mean Square Error  
Let us assume that the filter is of an FIR type and is applied to 
identification of unknown nonstationary systems. The 

nonstationarity is modeled with an independent and white 
�random walk� as  

h(n +1) = h(n) + w(n),   (7) 
where h(n) is the unknown system response vector (length N), 
w(n) is the random-walk vector with E[w(n)wT(n)] =σw 

2 I,σw 
2 

is the variance of each element of the vector w(n), and I is the 
identity matrix.  

Although the details are not given due to space limitation, 
expectation analysis of (1) through (4) for a fixed forgetting 
factor yields a set of difference equations for calculating the 
transient behavior of the filter convergence. Then, as n→∞, we 
can solve the steady-state excess mean square error (EMSE) 
ε(∞) for N >>1 as given by  

ε(∞) ≃ (αcλc N / 2 ) ( H2∞ / H∞ )σe 
2 (∞)  

+σa 
2σw 

2 N / ( 2αcλc H∞ ) , (8) 
where H∞ ≜ H [(2 /π) 1 / 2 MA ; m ] and H2∞ ≜ H2 [(2 /π) 1 / 2 MA ; m ], 
σa 

2 is the variance of the reference input, and  
σe 

2 (∞) ≜ε(∞) +σν2,  (9) 
withσν2  being the additive noise variance. The functions 
H(r ; m) and H2(r ; m) are defined by  

H(r ; m) ≜∫— ∞ 
∞ t 2 / [ 1 + (|t| / r) m ]×pN (t) dt  

and 
H2(r ; m) ≜∫— ∞ 

∞ t 2 / [ 1 + (|t| / r) m ]2×pN (t) dt,  
respectively, where pN (x) ≜ exp(—x 2/ 2) / (2π)1 / 2 is the 
Normal Density Function.  

As is anticipated, there exists an optimum forgetting factor 
that minimizes the steady-state EMSE in identification of the 
random-walk modeled nonstationary systems.  

Differentiating (8) with respect toλc, we find the optimum 
complementary forgetting factor  

λc opt ≃σaσw  / [αc H2∞
1 / 2σe min (∞) ] (10) 

and the minimum steady-state EMSE  
εmin(∞) ≃σaσw 

 N (H2∞
1 / 2 / H∞)σe min (∞) (11) 

with 
σe min 

2 (∞) =εmin(∞)  +σν2. (12) 

2.4 Analysis of the AFF-RLS-ATNA  
We assume that the variance of the forgetting factor is 
sufficiently small forρG << 1. Then, from (6), we can derive a 
difference equation for the expectation ofλc (n), from which 
we find, as n→∞, the steady-state complementary forgetting 
factor as  

E[λc (∞) ] ≃ ξa
1 / 2σaσw  / [αc H2∞

1 / 2σe AFF (∞) ], (13) 
and the steady-state EMSE  

εAFF(∞) ≃γaσaσw 
 N (H2∞

1 / 2 / H∞)σe AFF (∞) (14) 
with  

σe AFF 
2 (∞) =εAFF(∞)  +σν2, (15) 

where 
γa ≜ (ξa

1 / 2 +1 /ξa
1 / 2) / 2, (16) 
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and 
ξa  = ( 1 + 2η2 ) / ( 1 +2η2 / N ) (17) 

for an AR(1) (first-order autoregressive) reference input with 
regression coefficientη(0 ≤η< 1). Note here that 1 ≤ξa < 3 
and 1 ≤γa < 2 / 3 1 / 2 = 1.155.  

Comparing (14) with (11) and notingγa < 1.155, we find 
that the steady-state EMSE is close to the optimum value when 
the proposed adaptive forgetting factor control algorithm is 
combined with the RLS-ATNA in identification of 
nonstationary systems.  

3. EXPERIMENTS 

In this section, experiments with simulations and theoretical 
calculations are carried out to examine the performance of the 
RLS-ATNA and to verify the analysis developed above.  

3.1 Convergence Behavior of the RLS-ATNA  
Simulation and theoretically calculated results of the filter 
convergence are compared for the example below. The 
convergence behavior of the RLS-ATNA is also compared with 
that of the conventional RLS algorithm. The simulation result 
in the experiments is an ensemble average of the squared 
excess error over 1000 independent runs of the filter 
convergence. In the example, the filter reference input is a 
colored Gaussian process and is modeled as an AR(1) process 
with regression coefficientη( 0 ≤η<1).  

Example  N = 32, σa 2 = 1 (0 dB), η= .5,  
σν2 = .01 (‒20 dB), αc = 1  
m = 16,  MA = 2.5, ρA = 2 — 8  

Case 1 σw 
2 = 0 (stationary system)  

fixed forgetting factor (FFF) λc = 2 ‒ 11 

→ ε(∞) ≃ ‒41.4 dB 
Case 2 σw 

2 = 5×10 ‒ 6 (nonstationary system)  
(a) FFF  λc = 2 ‒ 11  → ε(∞) ≃ ‒6.5 dB 
(b) optimum forgetting factor λc opt = .0193 

→ εmin(∞) ≃ ‒19.2 dB 
Case 3 σw 

2 = 5×10 ‒ 6 (nonstationary system) 
adaptive forgetting factor (AFF) 

λc (0) = 2 ‒ 11, ρG = 2 ‒ 12   
AFF switched ON at  n = 10000 

→ ε(∞) ≃ ‒19.1 dB 
λc(∞) ≃ .022  

The results of the experiment for Case 1 are shown in Fig. 2, 
where the RLS-ATNA converges as fast as the conventional 
RLS algorithm. Fig. 3 depicts the results for Case 2 in which 
the system to be identified is nonstationary. The steady-state 
EMSE for the optimum forgetting factor attains the minimum 
value that is much lower than that for the small forgetting 
factor as used in Case 1. 
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Fig. 2 Adaptive filter convergence; FFF-RLS-ATNA versus 

conventional RLS (Case 1).  
N = 32, σa 2 = 1 (0 dB), η= .5, σν2 = .01 (‒20 dB) 
m = 16,  MA = 2.5, ρA = 2 — 8 , αc = 1, σw 

2 = 0,  
λc = 2 ‒ 11 

EMSE FFF-RLS-ATNA

(b) λcopt=0.0193

(a) λc=2-11
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Fig. 3 Adaptive filter convergence; FFF-RLS-ATNA (Case 2).  

N = 32, σa 2 = 1 (0 dB), η= .5, σν2 = .01 (‒20 dB) 
m = 16,  MA = 2.5, ρA = 2 — 8 , αc = 1,  
σw 

2 = 5×10 ‒ 6  
(a)λc = 2 ‒ 11   (b)λc opt = .0193 

EMSE

AFF-RLS-ATNA Complementary
Forgetting Factor

EMSE
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Fig. 4 Adaptive filter convergence; AFF-RLS-ATNA (Case 3).  

N = 32, σa 2 = 1 (0 dB), η= .5, σν2 = .01 (‒20 dB) 
m = 16,  MA = 2.5, ρA = 2 — 8 , αc = 1,  
σw 

2 = 5×10 ‒ 6  
λc(0) = 2 ‒ 11 , ρG = 2 ‒ 12 
AFF control switched ON at n = 10000 
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Fig. 5 Response of the filter to a burst noise  

(+20 dB, 100 time slots);  
RLS-ATNA versus conventional RLS.  
N = 32, σa 2 = 1 (0 dB), η= .5,  
σν2 = .01 (‒20 dB) → 1 (0 dB) → .01 (‒20 dB)  
for  n =10000 ‒10100. 
m = 16,  MA = 2.5, ρA = 2 — 8 , αc = 1, σw 

2 = 0,  
λc = 2 ‒ 11 

In Fig. 4, the results for Case 3 are shown, where the 
proposed adaptive forgetting factor control is enabled after the 
filter has converged with the small initial forgetting factor in 
identification of nonstationary systems. Clearly, we observe 
that the AFF is effective in controlling the forgetting factor to 
make the EMSE close to its minimum.  

In the figures above, the theoretical convergence curves 
exhibit fairly good agreement with those obtained through 
simulations.  

3.2 Response to a Burst Noise  
To demonstrate the robustness of the RLS-ATNA against 
impulse noise, filter response to a burst noise is examined. In 
this experiment, a burst increase of +20 dB for a short duration 
(100 time slots) in the noise variance, simulating impulse noise, 
occurs after the filter has converged.  

The parameters of the filter are the same as above, but the 
noise variance varies as  

σν2  = .01 (‒20 dB) → 1 (0 dB) → .01 (‒20 dB)  
for  n = 10000 ‒ 10100. 

The filter responses to the burst noise for the RLS-ATNA 
and the conventional RLS algorithm are shown in Fig. 5. The 
RLS-ATNA sufficiently suppresses the influence of the burst 
noise, allowing only a few dB increase in the EMSE. However, 
for the conventional RLS algorithm the increase in the EMSE 
becomes greater than 10 dB and decays very slowly.  

4. CONCLUSION 

�Adaptive forgetting factor recursive least squares adaptive 
threshold nonlinear algorithm� (AFF-RLS-ATNA) has been 
proposed which is basically the ATNA combined with 
recursive estimation of the inverse covariance matrix of the 
filter reference input and with a gradient-based adaptive 
forgetting factor control algorithm. The proposed 
AFF-RLS-ATNA exhibits robustness against impulse noise, 
and offers nearly optimum tracking performance in 
identification of nonstationary systems.  

The transient behavior and the steady-state performance of 
the AFF-RLS-ATNA have been analyzed to yield a set of 
difference equations for theoretically calculating the filter 
convergence.  

The results of the experiments for a practical example have 
shown that the AFF-RLS-ATNA gives the steady-state EMSE 
close to its minimum attainable value, while preserving the 
robustness against impulse noise. Fairly good agreement 
between the simulation and the theoretically calculated 
convergence has proven the validity of the analysis.  

In the paper, the number of the tap weights is assumed 
sufficiently large. Analysis for a small N is to be further 
developed.  
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