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ABSTRACT

The recursive least squares (RLS) adaptive algorithm is
combined with the “adaptive threshold nonlinear algorithm”
(ATNA) proposed by the author, to derive RLS-ATNA,
resulting in improvement of the convergence rate of the ATNA

that offers robust adaptive filters in impulse noise environments.

For application of the RLS-ATNA to identification of
random-walk modeled nonstationary systems, an adaptive
forgetting factor (AFF) control algorithm is proposed that
further improves the tracking performance in the steady state.
Through analysis and experiments, the effectiveness of the
AFF-RLS-ATNA is demonstrated. Fairly good agreement
between the simulation and the theoretically calculated
convergence validates the analysis.

1. INTRODUCTION

Among the many types of tap weight adaptation algorithm for
adaptive filters, the LMS algorithm usually exhibits faster
convergence than the other LMS-derived algorithms, when
required estimation accuracy is to be realized. The RLS
algorithm considerably accelerates the convergence of the LMS
algorithm for a colored reference input [1, Chap 8].

It is known that the LMS algorithm is quite vulnerable to
disturbances, e.g., impulse noise. One of the practical solutions
is to use the sign algorithm. However, the sign algorithm
converges much slower than the LMS algorithm as mentioned
above. The author proposed an algorithm called “adaptive
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improved if it is combined with the RLS algorithm. This paper
first derives “recursive least squares adaptive threshold
nonlinear algorithm” (RLS-ATNA). Weng et al. [3] propose
and analyze an RLS algorithm with an amplitude-limiting
nonlinear function of the error. Zou et al. [4] propose a
recursive least M-estimate (RLM) algorithm to mitigate the
adverse effects due to impulse noise.

When the RLS-ATNA is used to identify nonstationary
systems, a fixed forgetting factor for the RLS algorithm may
not provide the optimum tracking performance. In fact, for a
nonstatonarity that is modeled with a random walk, we find
that there exists an optimum value of the forgetting factor that
minimizes the steady-state error. This paper further proposes
and analyzes a gradient-based adaptive forgetting factor (AFF)
control algorithm to be combined with the RLS-ATNA. The
new AFF control algorithm gives the nearly optimum
forgetting factor to make the steady-state error close to its
minimum attainable value. The schematic diagram of the
adaptive filtering system equipped with the AFF-RLS-ATNA is
illustrated in Fig. 1.

2. ADAPTIVE FORGETTING FACTOR RLS
ADAPTIVE THRESHOLD NONLINEAR
ALGORITHM

2.1 Formulation of the RLS-ATNA

In this subsection, we formulate “recursive least squares
adaptive threshold nonlinear algorithm” (RLS-ATNA) by
combining the RLS algorithm with the ATNA proposed by the
author [2].

The update equations for the RLS-ATNA are given by the

threshold nonlinear algorithm” (ATNA) to meet these following.
contradicting requiremeits, namely, fast convergence and eln+l)=e(m) +a f[e(Tn) - Aw). m] &) M
o . g(n)=P(n) a(n) /[ A+a’(n) P(n) a(n)], @
robustness against impulse noise [2]. and
It is expected that the convergence rate of the ATNA may be
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Fig. 1 Schematic diagram for the AFF-RLS-ATNA.

P(n+1)=(1/2)[ P(n) ~ g(n)a’(n) P(n)], ©)
where n is the time instant, ¢(n) is the tap weight vector (N
taps), a(n) is the filter reference input vector (length N), e(n) is
the error signal, A(n) is the threshold parameter, g(n) is the
Kalman gain, P(n) is the estimator for the inverse covariance
matrix of the reference input, 4 is the forgetting factor, and
( - )7 denotes the transpose of a vector or a matrix. The step
size o is being introduced for generality, though it is usually
set to 1. The nonlinear function f (e ; 4, m) is specifically
defined as follows.

flesdmy=e/[1+(lel /)™,
where A > 0 and m = 2, 4, 8, 16, ... . For m— 0, the function
becomes “truncated linear[2].

The threshold A(n) is updated as follows, using a leaky
accumulator having the absolute value of the error as its input.

An+1)=(1 =0 ) Am)+ 0 1My | en) |, “
where o 4 is the leakage factor and M, is the multiplier.

2.2 Proposed Adaptive Forgetting Factor Control
Algorithm

The proposed gradient adaptive control algorithm for the
forgetting factor in identification of nonstationary systems is
given by the following equations [5].

Am)=1—-Ac(n) ®)
and

Aem+l)=Adc(n)+pgfle(n+1); An+1), m]

x fle(n) ; An), m] a'(n+1) g(n) / A (n), (6)

where A ¢ (n) is the complementary forgetting factor at time n
and p g is the coefficient for adaptation. The division by A ¢ (n)
on the right-hand-side of (6) is for a scaling purpose. Since the
amplitude-limiting nonlinear function f (e ; 4, m) is involved,
the control of the forgetting factor is also expected to be robust

against impulse noise.
2.3 Optimum Forgetting Factor and Minimum
Steady-State Excess Mean Square Error

Let us assume that the filter is of an FIR type and is applied to
identification of unknown nonstationary systems. The

nonstationarity is modeled with an independent and white
“random walk” as

h(n+1) =h(n) + w(n), ™
where h(#n) is the unknown system response vector (length N),
w(n) is the random-walk vector with E[w(n)w’(n)] =0, 1, 0 ,,>
is the variance of each element of the vector w(zn), and I is the
identity matrix.

Although the details are not given due to space limitation,
expectation analysis of (1) through (4) for a fixed forgetting
factor yields a set of difference equations for calculating the
transient behavior of the filter convergence. Then, as n—, we
can solve the steady-state excess mean square error (EMSE)

£ (o) for N >>1 as given by
£(0) = (@ AcN/2) (Hyw /Ho, ) 0,2 (0)
+0,204 N/ (2a.AcH,), (8)

where H.. 2 H[2/7)"*M,;;m]and Hs.. 2 Hy [2/7) > My;m],
0,2 is the variance of the reference input, and

0.2(%0) £ e(0)+0 v, &)
with 0 »? being the additive noise variance. The functions
H(r ; m) and Hy(r ; m) are defined by

Hym) 2 ) _ 2t/ [ 1+t /)™ Xpn (@) dt
and

Horsmy 2 § /01 (el /n) " PXpu( s,
respectively, where py (x) 2 exp(—x Y2y / @2x)?is the
Normal Density Function.

As is anticipated, there exists an optimum forgetting factor
that minimizes the steady-state EMSE in identification of the
random-walk modeled nonstationary systems.

Differentiating (8) with respect to 4 ¢, we find the optimum
complementary forgetting factor

Aeopt =0,0y /[ acHr? 0 omin(©)] (10)
and the minimum steady-state EMSE

Enin(®) =040y N(Hy?/H.) 0 emin(*0) (1n
with

Temin” ()= £ mn(®©) +0 2. (12)

2.4 Analysis of the AFF-RLS-ATNA

We assume that the variance of the forgetting factor is
sufficiently small for o << 1. Then, from (6), we can derive a
difference equation for the expectation of 4 ¢ (), from which
we find, as n—°, the steady-state complementary forgetting
factor as

EAc(®)] > &'20,0y /acH.? 0oam(®)], (13)
and the steady-state EMSE

€ ar(°) =7, 0,0y N(Hh'?/H..) 0o ape () 14
with

Oonrr (©)= € as(®) +0 27, s)
where

va 2 (&2 +178,1%/2, (16)
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and

£, =(1+22%)/(1427°/N) (17)

for an AR(1) (first-order autoregressive) reference input with
regression coefficient 7 (0 <7< 1). Note here that 1 <&, <3
and1 <y,<2/3'2=1155.

Comparing (14) with (11) and noting v, < 1.155, we find
that the steady-state EMSE is close to the optimum value when
the proposed adaptive forgetting factor control algorithm is
combined with the RLS-ATNA in identification of

nonstationary systems.

3. EXPERIMENTS

In this section, experiments with simulations and theoretical
calculations are carried out to examine the performance of the
RLS-ATNA and to verify the analysis developed above.

3.1 Convergence Behavior of the RLS-ATNA

Simulation and theoretically calculated results of the filter
convergence are compared for the example below. The
convergence behavior of the RLS-ATNA is also compared with
that of the conventional RLS algorithm. The simulation result
in the experiments is an ensemble average of the squared
excess error over 1000 independent runs of the filter
convergence. In the example, the filter reference input is a
colored Gaussian process and is modeled as an AR(1) process
with regression coefficient 7 (0 < 7 <1).
Example N=32, 0a’=1(0dB), n=.5,
o v*=.01(-20dB), a.=1
m=16, M;=25 p,=2"°%
Casel o> =0 (stationary system)
fixed forgetting factor (FFF) Ac=2 !
— ¢(©) = -414dB
Case2 02=5X10 ~°(nonstationary system)
@FFF Ac=2"" — s(c0) = -65dB
(b) optimum forgetting factor A copt=.0193
— () = -19.2dB
Case3 0,2=5X10 ~°(nonstationary system)
adaptive forgetting factor (AFF)
Ac(0)=2 " pg=2"12
AFF switched ON at n = 10000
— () = -19.1dB
Ae(o0) = .022
The results of the experiment for Case 1 are shown in Fig. 2,
where the RLS-ATNA converges as fast as the conventional
RLS algorithm. Fig. 3 depicts the results for Case 2 in which
the system to be identified is nonstationary. The steady-state
EMSE for the optimum forgetting factor attains the minimum
value that is much lower than that for the small forgetting

factor as used in Case 1.
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Fig. 2 Adaptive filter convergence; FFF-RLS-ATNA versus
conventional RLS (Case 1).
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Fig. 3 Adaptive filter convergence; FFF-RLS-ATNA (Case 2).
N=32, 0a’=1(0dB), »=.5, o »>=.01(-20dB)
m=16, M,;=25, 0,=2"
0y2=5%x10 ¢
@Ac=2 """ (b)Acopt=.0193
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Fig. 4 Adaptive filter convergence; AFF-RLS-ATNA (Case 3).
N=32, 0a’=1(0dB), »=.5, ¢ »v*>=.01(-20dB)
m=16, M,;=25, p.=2 "% a.=1,

0, =5%x10 °
Ac(0)=2 "1, pg=2""
AFF control switched ON at n = 10000
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Fig. 5 Response of the filter to a burst noise
(+20 dB, 100 time slots);
RLS-ATNA versus conventional RLS.
N=32, 0a’=1(0dB), 7=.5,
o v2=.01(-20dB) — 1(0dB) — .01 (-20 dB)
for »=10000 -10100.
m=16, M;=25, 0,=2"% a.=1, 0,>=0,
Ae=2 1

In Fig. 4, the results for Case 3 are shown, where the
proposed adaptive forgetting factor control is enabled after the
filter has converged with the small initial forgetting factor in
identification of nonstationary systems. Clearly, we observe
that the AFF is effective in controlling the forgetting factor to
make the EMSE close to its minimum.

In the figures above, the theoretical convergence curves
exhibit fairly good agreement with those obtained through

simulations.

3.2 Response to a Burst Noise

To demonstrate the robustness of the RLS-ATNA against
impulse noise, filter response to a burst noise is examined. In
this experiment, a burst increase of +20 dB for a short duration
(100 time slots) in the noise variance, simulating impulse noise,
occurs after the filter has converged.
The parameters of the filter are the same as above, but the
noise variance varies as
o v? =01(-20dB) — 1(0dB) — .01 (20dB)
for n=10000 - 10100.
The filter responses to the burst noise for the RLS-ATNA
and the conventional RLS algorithm are shown in Fig. 5. The
RLS-ATNA sufficiently suppresses the influence of the burst
noise, allowing only a few dB increase in the EMSE. However,
for the conventional RLS algorithm the increase in the EMSE
becomes greater than 10 dB and decays very slowly.

4. CONCLUSION

“Adaptive forgetting factor recursive least squares adaptive
threshold nonlinear algorithm” (AFF-RLS-ATNA) has been
proposed which is basically the ATNA combined with
recursive estimation of the inverse covariance matrix of the
filter reference input and with a gradient-based adaptive
forgetting  factor control algorithm. The proposed
AFF-RLS-ATNA exhibits robustness against impulse noise,
and offers nearly optimum tracking performance in
identification of nonstationary systems.

The transient behavior and the steady-state performance of
the AFF-RLS-ATNA have been analyzed to yield a set of
difference equations for theoretically calculating the filter
convergence.

The results of the experiments for a practical example have
shown that the AFF-RLS-ATNA gives the steady-state EMSE
close to its minimum attainable value, while preserving the
robustness against impulse noise. Fairly good agreement
between the simulation and the theoretically calculated
convergence has proven the validity of the analysis.

In the paper, the number of the tap weights is assumed
sufficiently large. Analysis for a small N is to be further
developed.
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