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ABSTRACT
A constrained iterative method for harmonic source parameter es-
timation is proposed based on an EM algorithm with an intent for
harmonic source separation. The problem of coinciding partials
and interference among them in general is mitigated by the con-
straints on the “weak” partials on the stronger ones of the same
harmonic source. A useful scheme to determine the weakness of
a partial is proposed. The constrained iteration is shown to give
more accurate estimates of the sinusoidal parameters which results
in good source separation even in most cases of highly overlapping
spectra.

1. INTRODUCTION

Sound source separation based on sinusoid modeling is useful in
a recovery of vocal or musical instruments from a single channel
record. It relies on accurate estimations and tracking of the param-
eters in the sinusoidal model, namely, the frequencies, the ampli-
tudes and the phases [1]. A lot of work has been done on such
parameter estimation in the case of a single partial. However, with
more than one partials, the estimation is not as straightforward due
to the interference among the components. Another difficulty is in
estimating frequency parameters which is non-linear with respect
to the observed signal. An iterative parameter estimation is pro-
posed in [2] by iterating through updated estimates of amplitude-
phase and the frequencies in turn. A complex linearization of the
Fourier transform of a windowed signal is employed to circum-
vent the problem of non-linearity in the frequency. Apart from
having to deal with an inverse of a complex number matrix which
is sometimes ill-conditioned when some partials are close by, the
processing window also has to be restricted to a non-sidelobe one.
In this paper, an alternative iterative method is then proposed. It is
based on an EM algorithm developed in [3] for general parameter
estimations of superimposed signals, extended to an estimation of
amplitudes, frequencies and phases of a single mixture of multiple
harmonic sources. The algorithm attempts to find the maximum-
likelihood estimates of those parameters. Its attractiveness lies in
the ability to decouple the problem into components which then al-
lows for separate optimization on each set of partial’s parameters.
However, it often gets confused when some of the partials are co-
inciding or become close by in frequency and gives poor estimates
as a result. Fortunately, the harmonic structure of each source al-
lows us to pool information among them [8]. Constraining the
“weak” partials on the stronger ones can then give more accurate
results. To decide which partials are weak and hence not so trust-
worthy, a measure of its interference by other partials can be used.
The accuracy of estimations in various cases is reported and used
in source separation.

2. EM ITERATIVE ESTIMATION

2.1. Signal model

The observed signal is modelled over a processing frame
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and
: � & " are the amplitudes, the frequencies and the phases associ-

ated with them.
- � ��� is assumed to be real additive white Gaussian

noise. The sources are assumed to be harmonic so that each har-
monic frequency of each source is approximately an integer mul-
tiple of the source fundamental frequency 7 # . The indexing of C
is set to reflect the convention for harmonics. It is assumed that
the sinusoidal parameters are stationary over the frame. This is ac-
ceptable for signal with slowly varying parameters and/or the use
of short processing frame.

2.2. EM algorithm on superimposed signals

EM algorithm is widely used to estimate parameters from incom-
plete data [4]. With an apprporiate choice of the complete data,
the parameters can be estimated by maximizing the marginalized
expectation of the likelihood over the missing components. The
current estimates are then used to find the conditional expectation
and the process is reiterated. In the problem of our interest, the
incomplete data is the observation ��� �D� whereas the complete data
can be chosen as E
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is an arbitrary decomposition of the noise. For convenience, all
the noise compoenents are assumed to be statistically independent,
zero-mean Gaussian with variance N�O

�
& " associated with each of

them where N O
�
& " �QP � & " N O is the fraction of actual noise power

assigned to the component.
With some modification from [3], the EM iterative steps be-

come

At R4SUT iteration,
E step : for A � ��� 3 ��	�	�	�� ? and for C � �V�
�W��	�	�	�� @ �BA � �X� , com-
pute
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The decoupling of individual components results from the statisti-
cal independence of the decomposed noise components. The like-
lihood maximization step corresponds to a least squares problem
when the noise is Gaussian, to be carried out on each compo-
nent independently. This can reduce the computational complexity
greatly especially when matrix inverse or parameter searching will
be involved. The EM algorithm is also gauranteed to converge to
a local maximum, though, as in any iterative method, good ini-
tialization is needed to ensure the global maximum. Despite the
much reduced dimension of the problem space, solving for

) � & "
is still not trivial. However, the theory of conditional EM algo-
rithm(ECM) [5] allows the M-step to be done in many small steps,
conditioning on other parameters being fixed while retaining the
convergence property of the original EM. The amplitude-phase
and the frequency of the partial are hence estimated in separate
steps.

Note that
P � & " is the fraction of noise power assigned to the

component set arbitrarily subject to
G � & " P

�
& " � �

. It is possible
that we set them to reflect the extent of noise in each component
to assist in adaptation. Unless there is a scheme to assign them
appropriately, they are set to be equal for fairness.

2.3. Amplitude-phase estimation

Dropping all subscripts on considering a single partial, let��� ���
(5)
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is a frame of estimated partial of length T,
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Assuming the adaptation should be smooth, phase unwrapping
is used to make sure that the

/76 1 � /98 function gives the wanted
value.

2.4. Frequency estimation

Because of non-linearity of the frequecy with respect to the signal,
a close-form solution is not available. A gradient descent is em-
ployed as a way to get close to the minimizing value of the least

squares. The frequency update at the R S�: iteration is; 7 � � ! ��
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The two steps minimization gives a monotonic decrease in sum
squared errors and hence a monotonic increase in the likelihood.
Though the iteration on the frequency estimate may not give an
exact minimizer, depending on the learning rate and number of
iterations, the generalized EM theory states that convergence is
still gauranteed as long as the likelihood is made monotonically
increasing. The algorithm is therefore very robust with respect to
convergence. It can be iterated until some specific convergence
criterion is met.

3. HARMONICALLY CONSTRAINED EM

Despite an independent treatment on each partial, it has been found
that the algorithm given above does not do well when some par-
tials have the same frequency or are very close by. It tends to
spread the amplitude among the partials incorrectly which might
have been caused by the use of equal

P
. The frequency estimates of

the partials involved are also poor which can in turn bring down the
performance on other partials. This situation occurs frequently in
Western music where integer ratios of pitch intervals are common
or in a rich polyphonic spectrum. In general, solving for nearly
coinciding partials is difficult but with a harmonic structure avail-
able, reasonably good recovery is possible. The “weak” partials
obscured by other neighbouring partials can be harmonically con-
strained in relation to other “strong” ones of the same source dur-
ing each iteration. If there are enough strong partials available, the
constraints will usually give better overall estimates than letting
the algorithm search for them freely. How to define “strong” and
“weak” is considered in the next section.

3.1. Credit assignments

There are many ways to assign credibility or trustworthiness to a
partial. One useful scheme is to look at the position of the par-
tial in the spectrum and its amplitude. If it is close to a larger
partial, its trustworthiness is low. On the other hand, if it is rela-
tively larger and far from others, its estimate from the algorithm
should be trustworthy and hence can be used as a reference for
other weaker ones of the same source. The score of each partial,
motivated by spectral interference, can be calculated as

1 � & " � �� @ ��� � ��
& �DC� � & " < ���FE/ � & �HG ��I �7 � & � � �7 � & " I � > (9)

where @ is the total number of partials involved and
E/ � & � ��/ � & � 5 GKJ � & " �/ � & " is the normalized amplitude. The function G � �

is appropriate spectral envelope approximation of the processing
window transform. For example, for a rectangular window, we
may use, G �47 �L�ML ��	 N + �V	 N !$#&% �4365�O �OQPSR � � 7UT07WVX 5 7 � 7UY07 V (10)
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where
�

is a suitable scaling.
� ���

gives close approximation
to the $ R 8 1 envelope in the mainlobe while X ensures a continu-
ity from the main lobe part to the sidelobe

� 5 7 roll-off envelope
approximation. 7 V � 7 > 5 
 is an appropriate boundary where� 5 7 starts to dominate. A similar expression can be obtain for
other window transform by suitable scaling but the closeness may
not be crucial as long as the general trend of interference is well-
represented. The envelope weighted by the relative amplitude re-
flects how much the peak of other partials will affect the peak of
the partial of interest in the spectrum while ignoring the side-lobe
oscillation. Consequently, it reflects the trustworthiness of the par-
tial from estimation, especially when the initial estimation is likely
to involve a peak picking process. Perfectly overlapping of peaks
causes bad credit score but the larger one is still allowed to have
a relatively good score. This is desirable since we do not want to
throw away too much information. Similar weighting scheme e.g.
exponential weighting should work as well but weighting in dB
scale magnitude should not be appropriate since very small ripple
will be over-emphasized. Besides, the interference is additive in
linear scale, not multiplicative.

The decision rule for weak partials may vary. A threshold
maybe set between zero and one or in relation to the maximum
of the set. Often, it is found that working with “distrust” defined
as �

�
& " � � � 1 � & " is more amenable to analysis. The decision

rule that is found to be effective is then to decide that a partial
is weak when its distrust score, � , is more than twice of the low-
est. The number of partials of the source can also be taken into
account. Rejecting too many partials as weak can reduce its ro-
bustness while keeping too many not so strong can also bring the
performance down. Clearly, there must be at least one decidedly
strong partial per source to be successful.

3.2. Constrained estimation of weak partials

Now that it has been decided which partials are strong enough to
take part in the iteration, during each EM iteration, the weak partialC of source A will be updated according to.�7 " � ������ � C�
	 " � �7 � � �7 � (11)

where �
�

is the set of strong partials of source A . The weighting

	 " � �7 � � is a function of
�7 � . If the frequency estimates are un-

correlated, the minimal variance solution for the weighting would
be

	 " � �7 � �J� � 5 N O �O�
G ����� � � 5 N O �O�
 (12)

where N O �O�
 is the variance of the estimator
�7 � . This will giveN O �O � T C O ��
 � � N O �O�
 5 � O � . It also indicates that good high fre-

quncy harmonic estimates will push down the bound, ignoring the
correlation, becuase of the division by � . Unfortunately, the es-
timates are obviously positively correlated so the bound is in fact
higher. Also, because of the changing statistics of the estimator
from one iteration to another, their variances are hard to estimate,
we may then be content with the credibility score, 1 , already ob-
tained, which reflects the extent of the variance of each partial es-
timator in a similar way. Hence, use

	 " �47 � �L� 1 "G ����� � 1 � (13)

3.3. Initial estimation

The convergence to the correct global solution relies on a good ini-
tial estimation. Peak picking with pitch estimation can be used to
find primary candidates of partials. Spurious peaks can be elimi-
nated by comparing the height of the peak to its width and its near-
est valley [1]. The multipitch estimator proposed by Klapuri in
[6] is suitable for determining the fundamental frequency of each
souce since it focuses on the interval between peaks and hence can
cope with many pitches co-existing. Its sub-band operation also
makes it robust having averaged over different subbands. Pitches
obtained can be used as a guideline to organize the partials already
detected into harmonic sources. To do so, the notion of harmonic
concordance is adopted [7]. The measurement of harmonic dis-
tance of two frequncy compoents is given by

� T � R � C � � ��
�� ������ #�� < 7 � 5 7 "/ 5 � @ ���� (14)

where
/

and
�

are integers within the possible range given the low-
est frequency in the observed mixture. The starting references of
the group are the fundamentals. If missing, other strong compo-
nents may be used. The rest of the partials are then considered one
by one for the minimum total harmonic distance from the partials
already grouped to a particular source. If there is any ambigu-
ity, that is, the difference of grouping a partial to one source than
another is not large enough, others are grouped first and the am-
bigious partials will be revisited after the unambigious ones have
been assigned. This will improve the chance of grouping correctly.
Also, if a harmonic of a source is missing, it is checked against the
possibility of the component being assigned to the other source
due to coincidence. In experiments, the initial estimation process
is made sure to give reasonable estimates so that the errors do not
propogate. If the partials at an expected position are perfectly over-
lapping, they are assigned the same parameter values for iteration.

4. SIMULATION RESULTS

A various combinations of synthetically generated harmonic sources
with stationary parameters are used in the experiments at the sam-
pling rate of 16kHz. In all experiments, T=256 and zero-padding
to 1024 is employed for FFT operation prior to peak detection.
The maximum number of iterations used is 100, showing rela-
tively slow convergence compare to the algorithm in [2]. How-
ever, extension to more partials is simple and the computational
complexity increases linearly with convergence gauranteed as a re-
ward. The iteration starts on a stronger source, decided by the sum
of the score of their partials, and also on a stronger partial. The
algorithm shows significant improvements over the initial peak
picking estimations in all cases where initialization is good.It also
does better than unconstrained EM algorithm where all partials
adapt freely. It is very robust to noise although a threshold effect
is slightly apparent as common to many non-linear estimators as
shown in Figure 1. Caution should be taken in interpreting results
as curve-fitting algorithm used here should not be expected to do
as well at high frequency as at low frequency while peak-picking
process should be able to do equally well because of regular inter-
val in the DFT bins. Mean absolute error is then represented with
no normalization. It copes very well with coinciding and highly
interfering partials. Unfortunately, best performance depends on
parameter and threshold adjustment, not to mention the number
of iterations allowed. The credit assignment and decision rule is
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Fig. 1. Top : the mixture spectrum, Bottom two : Mean abso-
lute error of constrained EM estimations(solid) compared to peak-
picking(dash-dot) and unconstrined EM estimates(dash) in various
SNR. Case of pitch=300 & 400 Hz with number of harmonics=10
& 8 respectively

verified to work in obvious cases by inspection; the coinciding or
nearby partials are ruled as weak.

It should also be noted that a source with a moderate number
of harmonics is more robust in estimation because of higher av-
eraging while not too much overlapping. A stringent decision to
pass a partial for strong can lead to bad results. Also, accurate
amplitude estimates are much harder to obtain than the frequency,
most notably when two partials are perfectly coinciding. Without
any further constraint, the algorithm has no way of assigning the
portion correctly. This is where the learning rate,

P
, can become

important. Unfortunately, amplitudes of harmonic sources do not
necessarily have certain relationships as in frequencies, so con-
straining may not be as effective. However, in this approach, none
of the temporal cues available in real situation have been taken into
account having considered only an estimation within a given frame
of observation. The problem of coinciding partials can be further
mitigated by the tracking of trajectories and the onset time can
also help organize the partials into correct groups. Without tempo-
ral context, harmonically constrained EM is unlikely to yield good
amplitude estimates for coinciding partials though the frequencies
can still be well-constrained as shown.

To illustrate the capability in dealing with a real world signal,
an example of a separation of a horn and a flute playing at different
pitches is shown. The signal parameters change slightly over time
as vibrato and tremolo but the estimates using a window length of
about 40ms can give good estimates. Using additive synthesis re-
construction from linearly interpolated parameters across frames,
closely overlapped peaks in spectrum over a sampled frame are ob-
tained as shown in Figure 2. However, the third peak in the second
source can be seen missing due to coincidence with the partial in
the other source which gets all of the amplitude proportion, indi-
cating occasional problem.

5. CONCLUSION

An alternative iterative method for sinusoidal parameter estimation
of a mixture of harmonic sources is proposed. The harmonic struc-
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Fig. 2. From top to bottom, the spectrum of the mixture of a
horn and a flute and the spectra of the original(solid) and estimated
sources(dash) overlaid

ture allows for good estimation of the weaker partials constrained
on the stronger ones based on the trustworthiness of each partial.
The trustworthiness score can be calculated from the weighting
of interfering spectral envelope. It is shown to give much more
accurate estimates of stationary mixtures. In the future, a non-
stationary model can be considered and other possible weighting
scheme,maybe perceptual, could be investigated. Also, the ampli-
tude ambiguity of coinciding partial deserves more attention and
an inclusion of temporal context should also be beneficial.
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