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ABSTRACT

Independent Component Analysis (ICA) or Blind Signal Sep-
aration (BSS) has become an increasing important research
field due to its rapidly growing applications in various areas,
such as telecommunication systems, sonar and radar sys-
tems, audio and acoustics, image enhancement and biomed-
ical signal processing. In this paper, first a novel adap-
tive ICA (AICA) entropy optimization algorithm for finding
pairs of simplified activation functions (SAF) will be intro-
duced. Then the theoretical explanation is describled. Fi-
nally we discuss the algorithm with a few of existing repre-
sentative methods. It is worthy noting that the experimental
simulation results prove the effective performance on sepa-
rating signals for the algorithm.

1. INTRODUCTION

There have been a lot of papers discussing activation func-
tions (AF) or contrast functions because they greatly influ-
ence the performance of ICA algorithms. Compared with
those correlation-based algorithms such as Principal Com-
ponent Analysis (PCA), ICA not only separates the second-
order statistical signals but also reduces high-order statisti-
cal dependencies, attempting to make the separated signals
as independent as possible.

Unsupervised learning rules were proposed to maximize
the mutual information (MMI) between the inputs and the
outputs of a neural network [1]. It was showed that in the
low-noise case, MMI implied that the output probability
density function (p.d.f.) can be factorized as a product of
marginal p.d.f.s [2]. The stochastic gradient learning algo-
rithms for MMI were derived [3] [4]. The BSS problem was
put into an information-theoretic framework and demon-
strated the separation and deconvolution of mixed sources
[4] [5].

It showed that the infomax and the maximum likelihood
estimation approaches are equivalent [6] [7]. The original
infomax learning rule for blind separation [4] was suitable
for super-Gaussian sources. [8] derived, by choosing ne-
gentropy as a projection pursuit index, a learning rule that is

able to blindly separate not only mixed sub-Gaussian (sub-
G) but also super-Gaussian (super-G) source distributions.
This learning algorithm was showed to be an extension of
the infomax principle satisfying a general stability criterion
and preserving the simple architecture [9]. Natural gradi-
ent and relative gradient simplified the learning rules by
eliminating the complex matrix inversion [10] [5]. Simu-
lations and results on real-world physiological data showed
the power of the proposed methods [11].

It is noted that [12] has developed an on-line learning
algorithm which minimizes statistical dependence among
outputs for blind separation of mixed signals. The depen-
dence here is measured by the average mutual information
(MI) of the outputs. The improved ICA (IICA) algorithm
[13] extended the work by adopting a more precise AF.

2. PROBLEM STATEMENT

Assume that source signals s(t) = [s1(t), ..., sn(t)]T are
unknown and their components are, at each time instant,
mutually statistically independent:

p(s(t)) =
n∏

i=1

p(si(t)) (1)

These source signals are also assumed to be stationary pro-
cesses and each source has moments of any order with zero
mean. Let x(t) = [x1(t), ..., xn(t)]T be sensor signals,
which is a linear instantaneous mixture of the source sig-
nals:

x(t) = As(t) (2)

where A ∈ Rn×n is an unknown mixing matrix of full
rank. The demixing model here is a linear transformation:

y(t) = Wx(t) (3)

where y(t) = [y1(t), ..., yn(t)]T is an output vector, W ∈
Rn×n is a demixing matrix to be identified. The system
model is assumed to be noise-free. The number of source
signals is the same as the number of sensors.

Note that our assumptions in the paper are the same as
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[14] [5]. At most one source in the source signals is permit-
ted to be Gaussian distribution. Sensor noise is considered
to be an independent source itself before mixing.

Although there exist many ICA algorithms, their only
objective is to find a precise way of weight update to recover
the original sources. Let us view an effective weight update
formula derived by [12] using Kullback-Leibler divergence
(KLD) and entropy principles.

dW
dt

= η(t){W−T − f(y)xT } (4)

Substituting y = Wx and xT WT = yT , we get

dW
dt

= η(t){I − f(y)yT }W−T (5)

and using natural gradient (NG), we get the on-line algo-
rithm

dW
dt

= η(t)(I − f(y)yT )W (6)

where activation function (AF) f(y) = H(y; ki) is a vector
which includes f(yi) and depends on the cumulants ki and
is necessary to compute the corresponding entropy.

3. SYMMETRY OF NON-GAUSSIAN

From our simulations we can prove that IICA algorithm
[13] has very good performance in separating source sig-
nals blindly. However, we note that the activation function
of IICA is too complex and we are interested in developing
a simpler and more practical algorithm. Also the IICA algo-
rithm works best for sub-G signals, and may fail for super-G
signals. At the same time, we hope the algorithm design for
AF can be canonical and solve both the super-G and sub-
G problems. In this section we present a new approach on
how to design a pair of ICA non-linear AFs which can work
effectively not only for sub-G, but also for super-G signals.
First let us introduce the following theorem.
Theorem 1: Consider a stochastic gradient on-line learning
algorithm. If y is a random variable, fi(y)(i = 1, 2) are
AFs, and φ(y) is a smooth non-linear interval monotonic
odd function of y, then fi(y) = y − (−1)iφ(y)(i = 1, 2) is
a non-linear super-G (sub-G) AF.
Proof. Let pi(y)(i = 1, 2) be two probability distribution
functions of y, respectively, as shown by

−∂ log pi(y)
∂y

= y − (−1)iφ(y), (i = 1, 2) (7)

Integrating the above equations, we get

pi(y) = e−
1
2 y2

e(−1)i
∫

φ(y)dy, (i = 1, 2) (8)

Note that
∫

φ(y)dy is an even function since φ(y) is defined

to be odd. In addition, consider e
∫

φ(y)dy > 1,

∀ ∫
φ(y)dy > 0, it should have

p1(y) < e−
1
2 y2

< p2(y) (9)

The middle term of the above equation is the well known
Gaussian p.d.f. with zero-mean and unit-variance. There-
fore, f1(y) corresponding to p1(y) is a super-G AF, and
f2(y) corresponding to p2(y) is a sub-G AF. If

∫
φ(y)dy <

0, we have the reverse situation. The symmetry of super-G
and sub-G, however, is always unchanged. ♦
Consider more general situations, we have this lemma:
Lemma 1: Consider a stochastic gradient on-line learn-
ing algorithm. If y is a random variable, fi(y)(i = 1, 2)
are AFs, constant a ∈ (0, 1] and φ(y) is a smooth non-
linear interval monotonic odd function of y, then fi(y) =
(−1)i+1[(a + (−1)i+1 − 1)y + φ(y)], (i = 1, 2) is a non-
linear super-G (or sub-G) AF.
Proof. Using the same integration method in Theorem 1,
we get:

pi(y) = e−
1
2 y2

e(−1)i+1( 1−a
2 y2+

∫
φ(y)dy), i = 1, 2. (10)

Note that only the difference exists in the second term of the
above equation; thus we get the following conclusions

p1(y) < p(y) = e−
1
2 y2

< p2(y) (11)

or
p1(y) > p(y) = e−

1
2 y2

> p2(y) (12)

The first p.d.f. relation equation tells us that f1(y) is a
super-G function and f2(y) is a sub-G function, and vice
versa for the second p.d.f. relation equation. Here the sym-
metrical feature of the two non-Gaussian p.d.f. is again
proved. ♦

We also note that if a = 1, p1(y) and p2(y) in Lemma 1
are the same as that in Theorem 1. The above theorem and
lemma can be easily expanded in vector form.

4. SIMPLIFIED ACTIVATION FUNCTIONS

The basic idea for simplifying AFs is that a non-Gaussian
AF can be realized through combining a linear function and
a non-linear function. First, if we choose y as the linear
function, it is the easiest and natural choice. However, this
choice reflects that the corresponding p.d.f. in probabil-
ity space is Gaussian with zero-mean (µ = 0) and one-
variance (σ2 = 1). Second, we have some choices for
non-linear functions such as tanh(y), 1

1+exp(−ay) , and so
on. Here we choose tanh(y) because of its good sigmoid
and odd symmetrical properties. Then we use a polynomial

ˆf(y) =
∑n

i=1 aiy
i to fit the data sets {yk, f̂k(y)}m

k=1 of the
function f(y) = y − tanh(y)( or f(y) = y + tanh(y)).

The Taylor expansion is a useful approximation tool.
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It can be represented approximately by an finite series of
terms centered about a given point y0 as follows: where
f (n)(y0) is the nth derivate of y at y0.

f(y) =
N∑

n=0

f (n)(y0)
n!

(y − y0)n + RN

≈
N∑

n=0

f (n)(y0)
n!

(y − y0)n (13)

where f (n)(y0) is the nth derivate of y at y0, and RN is a
remainder assumed to be small.

The difference between a Taylor series representation
and a general polynomial is that the Taylor series utilizes
derivative information that is localized [15]. We can use
Least Mean Square (LMS) method to best fit the data sets.
Let error ε = f(y)−∑N

i aiy
i. We then look for minimizing

E[εεT ] = E[(f(y) −
N∑
i

aiy
i)2] (14)

The minimum can be found by setting the partial derivatives
with respect to a0, a1, · · · , aN equal to zero. We thus get the
normal equations YA = f [15], where

Y =




N
∑

yi · · · ∑
yN−1

i∑
yi

∑
y2

i · · · ∑
yN

i
...

...
. . .

...∑
yN−1

i

∑
yN

i · · · ∑
y
2(N−1)
i


 (15)

A = (a0, · · · , aN )T , f = (
∑

fi,
∑

yifi, · · · ,
∑

yN−1
i fi)T .

let Y be full rank. Then it is not difficult to solve the equa-
tion to get a0, a1, · · · , aN through A = Y−1f . Using The-
orem 1 and Lemma 1, we may find pairs of non-Gaussian
AFs and simplify them. Let us view the following example.

A non-Gaussian AF of the fifth-order can be easily got-
ten through LMS polynomial fitting with actual real time
signal.

f1(y) = 0.0023y + 0.3107y3 − 0.0755y5 (16)

Then using the above theorem and lemma, the other sym-
metrical non-Gaussian AF can be gotten immediately as

f2(y) = 1.9977y − 0.3107y3 + 0.0755y5 (17)

SAF is tested as sub-G AF and it works surprisingly well for
separating source signals blindly through the on-line learn-
ing simulations. Table 1 lists its performance index (PI)
value err3 compared with that of err1 [16] and the extended
infomax ICA (EICA) err2 [9]. The separation performance
is evaluated through error measure err(·) [12] that is equal
to:

N∑
i=1


 N∑

j=1

|pij |
maxk|pik| − 1


 +

N∑
j=1

(
N∑

i=1

|pij |
maxk|pkj | − 1

)

(18)

Table 1. PI values of activation functions

TEST 1 2 3 4 5 6 7

err1 1.37 1.97 1.77 2.26 1.37 2.26 1.77
err2 1.79 1.80 2.34 2.16 1.79 2.16 2.34
f13(y) 2.13 1.11 1.78 2.04 2.13 2.04 1.78
f15(y) 2.15 1.06 1.63 2.33 2.15 2.33 1.63

=
N∑

i=1

(∑N
j=1,j �=k |pij |
maxk|pik|

)
+

N∑
j=1

(∑N
i=1,i �=k |pij |
maxk|pkj |

)
(19)

where performance matrix P = (pij)i,j = WA. Note that
the inputs are three sources and A is a random mixing ma-
trix that we do not need to know.

A =


 0.0680 −0.0703 0.0726

−0.0520 −0.0049 0.0992
0.0955 0.0756 0.0515




s1(t) = 0.1 sin(400t) cos(30t)
s2(t) = 0.01sign{sin(500t + 9 cos(40t))}
s3(t) = 2rand(1, length(t)) − 1.0 (20)

and fs = 10K Hz, N=200, η=0.1. We get err1 = 1.7730,
err2 = 2.3364, err3 = 1.6344.

In Table 1, f13(y) denotes a third-order sub-G AF, and
f15(y) denotes a fifth-order sub-G AF. We have done more
than fifteen simulations; however, we have found that the
group PI results are almost the same for each four simu-
lations if we ignore very small computational errors. The
repeated PI values of two groups are shown in the table.
The repeating order is arbitrary. We believe that when the
algorithm converges, the local optima of these functions
may have optimized the network parameter WA and then
trapped PI into limited fixed values.

SAF and corresponding p.d.f. are compared with sub-G
and super-G [11].The simulation results are excellent, espe-
cially for values of y ∈ [−1, 1]. The fitting errors are almost
equal to zero. The small values of the first and the sec-
ond moments indicate the fitting efficiency [17]. In fact, in
our simulations and calculations y values are always small
enough since the sensor signals (including uniform noise)
are weak and the mixing weights are set to be low.

In more compact notation, the AFs can be rewritten as
one formula, with a sign function of kurtosis switching be-
tween sub-G and super-G, as

f(y) = y + K(y − (ay + φ(y))) (21)

When K = 1, the formula switches to super-G, and when
K = −1, it switches to sub-G. If there exist K = −1 and
φ(y) = 0 at the same time, then we have f(y) = ay, the
SAF is used for Gaussian. Thus the fifth-order SAF formula
of the example can be expressed as

f(y) = y − K(−0.9977y + 0.3107y3 − 0.0755y5) (22)
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where K = ±1 switches between super-G and sub-G, de-
pending on the kurtosis measure.

What on-line learning is looking for includes a nonlin-
ear function, from which the actual nonlinearity can be well
described from a package of real time signal. The varying
ratio of Gaussian in the differential sub-space is a line with
the direction determined by constant a. Those absolute val-
ues of high varying ratio called super-G are always greater
than ay since it must respond to some sharp and powerful
information such as voice and music signals with noise en-
vironment. This is why its curve of p.d.f. always lies below
the Gaussian because if it shares the same peak point with
sub-G, it can get bigger varying ratio only by hiding under
the Gaussian, vice versa.

From the above equations it is easy to get y = (f1(y) +
f2(y))/2, it means that y is equal to the arithmetical average
of super-G and sub-G. Therefore, it is sufficient for us to say
that super-G and sub-G are symmetrical with respect to each
other with the linear axis f (Gaussian) = ay.

If the precision can be accepted, the simplified poly-
nomial approximation for the AFs may give us a new ex-
ploratory direction in analytical BSS because it has many
advantages such as the ease of use and simple to differen-
tiate and integrate. It also has the advantages of odd and
even transformation with each differentiation (or integra-
tion) and excellent one-to-one correspondence through dif-
ferentiation and integration.

5. CONCLUSIONS

In this paper a new simplified adaptive ICA algorithm has
been proposed for the solution of BSS problem. The method
is proved to be effective through our theoretical analysis,
calculation results and experimental simulations.
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