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ABSTRACT Mercer's condition, we recover the standard support vec-

Sparse Bayesian learning and specifically relevance vectof®" 'machme (SVM? model. While successful for cla§3|f|-
ation and regression problems, however, SVMs are inade-

machines have received much attention as a means of achie¥: te for findi ) | tati f iol
ing parsimonious representations of signals in the contextdUat€ 1orfinding sparse signairepresentations from possibly

of regression and classification. We provide a simplified overcomplete bases. In fact, SVM discriminate functions

derivation of this paradigm from a Bayesian evidence per- are usually o_nly quasi-sparse, W'Fh the numbgr. of support
spective and apply it to the problem of basis selection from vegtqrs growing steeply with the size of th.e ”"’“”'T‘g set [3].
overcomplete dictionaries. Furthermore, we prove that theThIS is partially due to the fact that all outliers typically be-
stable fixed points of the resulting algorithm are necessarily co_metﬁupp(:_r t v?_ctorsf. I\:Io:jeove;fr, SVMstunfortunater re-
sparse, providing a solid theoretical justification for adapt- qUIrI\(jI ees 'ma |onc|) atrade-o tparami_er. RVM) h

ing the methodology to basis selection tasks. We then in- ore recently, relevance vector machines ( ) have
clude simulation studies comparing sparse Bayesian Iearn-been fashioned from a Bayesian perspective to address these

ing with Basis Pursuit and the more recent FOCUSS classl'm'tat'o.ns to EVIMS [f3] tAIthougtTl |n|t|a:l?3</<'3/leveloped for
of basis selection algorithms, empirically demonstrating su- regression and classitication problems, S, ormore gen-

perior performance in terms of average sparsity and succesgra”y’ th.e sparse Baye3|an Igarp ing (SBL) fr.amework, pro-
rate of recovering generative bases. vide a viable candidate for finding sparse signal represen-

tations. In this paper, we prove that the SBL cost func-
tion leads to sparse solutions of underdetermined linear in-
verse problems, providing solid theoretical justification for
adapting it to basis selection tasks. Furthermore, we empir-
cally substantiate the algorithm by comparing it with Ba-
sis Pursuit [2] (which finds minimurf -norm solutions via

1. INTRODUCTION

Sparse signal representations from overcomplete dictionar
ies find increasing relevance in a large number of appli-

cation domains [1, 2]. Moreover, attaining such represen- oo programming (LP)) and the FOCUSS class of algo-
tations is tantamount to solving regularized linear inverse . o [4, 5] (which find minimump-norm-like ¢(,<1) so-
' P>

problems that have far-reaching significance. Consequentlyy o yig gradient factorizations). However, first we will
deeper insight into these issues is of both theoretical andintroduce a simplified derivation of the SBL,aIgorithm as
practical importance. The canonical form of this problem is a model selection tool based on maximizing Bayesian evi-
given by, dence.

t=dw +e, Q)
. . 2. SPARSE BAYESIAN LEARNING
where® ¢ RV*M is a matrix whose columns represent a

possibly overcomplete bas{d/ >> N), w is the vector of  |n contrast to the statistical learning theory that underlies
weights to be learned,is noise, and is a vector of targets. ~ SVMs, SBL arises from a probabilistic perspective. In [3],
In this vein, we seek to find weight vectors whose entries SBL is presented/derived as an approximation of the poste-
are predominantly zero. rior distribution of all unknowns given the data. Herein, we
When @ is selected such thab; ; = K(zi,z;) for  derive the SBL cost function as an exact evaluation of the
training vectorse;, z; and kernel functiork (-, -) satisfying ~ Bayesian evidence. First, we will describe the two levels
This research was partially supported by the National Science Foun- of Bayesian inference that motivate SBL and subsequently,

dation Grant No. CCR-9902961 and DiMI grant #22-8376 sponsored by We_Wi” detail how appropriate sparsifying weight priors are
Nissan. estimated from the data.

0-7803-7663-3/03/$17.00 ©2003 IEEE VI - 601 ICASSP 2003



2.1. Levels of Bayesian Inference noise model with unknown variance. Then we assume tar-
getst are distributed ap(t|w, H) o N (¢t|®w,o?I) where

o2 is unknown . We must now select an appropriate form for
the weight prior that reflects a preference for less complex
functions, e.g.,

Per the discussion in [6], a statistical modélof dataD

is characterized by three components: (i) a functional form
parameterized by some weights (ii) a prior distribution
over these weightsp(w|H), and (iii) the distribution of

the data given the model and fixed weights, i.e., the likeli- M

hoodp(D|w, H). As we will see later, the power of modern p(w|H) = p(wly) = HN(“)’?“)’ Vi), (3)
Bayesian inference lies in its ability to optimally select (ii) i=1

and (iii). where~ is a vector ofM hyperparameters controlling the

- The first level of inference assumes a g|Ven maHel prior variance of each We|ght AlSO, we may specify a hy_
is fixed and deduces the parameterdy maximizing the  perpriorp(~;) on eachy; if we so desire. We are now in a

posterior weight density(w|D, H) o< p(D|w, H)p(w|H). position to formulate the evidence for each candidate model
The normalizing termp(D|H) (referred to as the evidence gjstinguished byy ando?,

for H) is not needed since it is independentaf But how
do we know which modeH is most appropriate?

The second level of Bayesian inference involves com-  p(D|H) = p(t|y,o?)
paring models/hypotheses, e, andH,, with respect to )
the data. This is accomplished by evaluating the evidence = /p(ﬂw’ o”)p(wly)dw
P(D|H;), which can be computed by integrating over the
; . _ —N/2 -1/2 |
weights: = (2n) |2 exp _it Xt (4)

P(DIH;) = /P(D\w, H;) P(w|H;)dw. (2)  whereX; £ o1 +®I'd” and we have introduced the nota-
' tion T £ diag{~}. The greater the evidenggt|v, o%), the
Models with excessive weights will typically have sharply more plausibley ando?, which collectively demarcat.
peaked likelihoodsP(D|w, H;) relative to the size of the
weight space. Furthermore, if the pribw|H;) ismoreor 2.3, Sparse Bayesian Learning Algorithm

less uniformly distributed, then large weight spaces will be } . L
characterized by small prior densities in any given region. With SBL, the first level of Bayesian inference is trivial by

Thus, when we integrate (2) we obtain a small value for the 9€Sign; given the gaussian weight priors from (3), the pos-

evidence. terior density of the weights is gaussian, i.e.,
In contrast, if we have significantly fewer weights, then )
the likelihood becomes less sensitive to the exact weight p(wlt,y,07) o N(p, ), ()

values and”(D|w, H;) tends to spread more about its peak with ;s = ¢=2287¢ andX = (027 ® + I'~1)~1. Thus,
value. Moreover, the smaller weight space will also have athe onus remains in estimatingand 2. To accomplish
higher density producing a larger evidence upon integration. this, we employ the EM algorithm to maximiz&y, o|t) o

Thus, the evidence favors models that are parsimoniousp t|~, o2)p(y)p(c?) = evidencex hyperprior. This pro-
and less sensitive to finely tuned weights. duces the update rule

2.2. Model Selection AW — 3,0 + 1, (6)

Like SVMs, the functional form of our statistical mods which is iterated until convergence. Likewise, an update

remains fixed as in (1). Thus, most of our remaining ef- rule for o> can be simply derived [3]. Also, whe is

fort in model selection must focus on finding an appropri- formed from kernel functions, we obtain RVMs.

ate weight priop(w|H) and the likelihooth(D|w, H). We

should note that the modern Bayesian methodology does not 3. GLOBAL CONVERGENCE TO SPARSE

attempt to select the ‘right’ priors or the FOCUSS approach SOLUTIONS

of selecting a fixed sparsity inducing prior. Rather, many

different priors can be compared corresponding to different Sparse solutions are formally equivalent to the basic solu-

hypothesis about underlying truth. These hypothesis can betions in LP, i.e., solutions with at mo${ < M nonzero

empirically compared by evaluating the evidence for each entries. In this section, we prove that all stable fixed points

model [6]. of the SBL algorithm outlined above are sparse solutions.
So how is this accomplished? Following the reasoning To accomplish this we express our cost functidras the

in [3], we first handle the likelihood by assuming a gaussian log of P(v, o2|t) giving,

VI - 602




1 1
L=—5log || — 5#2;% 7

Therefore, the constrairity = b for someb clearly holds
tT¥; 't constant. Moreover, it can be shown that over this
constraint surfacey andy are linearly related by

where both terms come from the evidence and we have as-

sumed a uniform hyperprior on. Before we can proceed

further, we must introduce three intermediate results:
Lemmal —log|X;| is convex with respect t&@ (or
equivalentlyy).

Proof. By definition, X, is an affine transformation of

I'. Furthermore, in the space of psd matricedog |z| is a

p =TT (t —b) = diag{®” (t — b) }~, (12)

completing the proof.

Lemma 3 Every local maximum of is a sparse.

Proof. The proof is by contradiction. Assume for the
moment thaty = +* is a non-sparse local maximum gf

convex function of: (see e.g., [7]). Thus, itremains to show Now consider the optimization problem,

that a convex function of an affine transformation is convex
(assuming the transformation preserves positive semidefi- max :

niteness).
Let f : RN — Randg : RY — RYN pe func-
tions such that £ fog : RM — R, with f convex. By

application of the chain rule for vectors, we can compute

H", the Hessian oh, as a function ofH/ and H9»,n €
{1,...,N - N}, which represent the Hessians pfand g

respectively:
mn T Hgndiag< of )] .
OGn

(8)

N-N N-N

8m8n
=X e

m=1n=1

Now letg(z) = Az +b. ThenH9 = 0Vn and%¥m £ w,,
is constant/z. We may then rewrité" as,
N-N N-N
= > wawg H, e ©)
m=1n=1

Itis then easy to show tha&f” is psd since, for any ¢ RV,
we have

N-N N-N
T - T(Z 3 £H£n>
m=1n=1
N-N N
= Z 2T w,) (w Z)Hf
m=1 n=
N-N N-N
= Z anamHj:m
m=1 n=1
= aTH'a >0, (10)
wherea,, & wl'z € R, a = [a1,...,ayn]|’, and the in-

equality follows sincef is convex. Thereford” is psd
everywhere and consequentlys convex.

Lemma 2 The termt”'Y; 't is constant over aly satis-
fying the NV linear constraintd = A~ if b = ®u* for some
w* as defined in (5) and = ®diag{®7 (t — b)}.

Proof: By the matrix inversion lemma,

tIe M = o 2T (t — Dp). (11)

—log [ %]
subjectto: Ay=10b, v>0, (13)

where A andb are as defined before. From Lemma 2, the
above constraints hold'X; 't constant defined on a closed,
bounded convex polytope (i.e., we are maximizing (7) while
holding the second term constant). Also, Lemma 1 dictates
that the objective function is convex. 4f* is truly a local
maximum of L, then a maxima of (13) should be= ~*
as well. However, from [8] Theorem 6.5.3, all maxima of
(13) are achieved at extreme points and additionally, Theo-
rem 2.5 establishes the equivalence between extreme points
and basic feasible solutions, i.e., solutions with at mést
nonzero values. Thus, if* is not a basic feasible solution,
it cannot be a maximum of (13) and therefore cannot be a
local maximum of. Consequently, all local maxima must
be sparse.

Theorem The SBL algorithm is globally convergent and
the stable fixed points are sparse solutions.

Proof. The EM algorithm is provably convergent to fixed
points. Furthermore, from Lemma 3, all stable fixed points
are sparse, completing the proof.

4. RESULTS

To quantify the performance of SBL relative to other meth-
ods, we completed a simulation study of each method on
synthetic data. For simplicity and ease of comparison, noise-
less tests were performed first. This facilitates direct com-
parisons because discrepancies in results cannot be attributed
to poor selection of the trade-off parameter (which balances
sparsity and quality of fit) in the case of FOCUSS and Ba-
sis Pursuit [2, 9]. To accommodate the low noise case with
SBL, we approximated the low noise limit by settingto a
small fixed value (0~8). Experiment | below details these
results. Experiment Il involves a low-noise sparse filtering
application. In all cases, FOCUSS weights were initialized
using thels-norm solution while SBL was initialized with
small randomy values. Basis Pursuit was performed using
the default Matlablinprog command.
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4.1. Experiment |

Consistent with [4], we generated a randdmx M & ma-

trix whose entries where each drawn from a standardizec
gaussian distribution. The columns were then normalized
to unit /3-norm. Sparse weight vectots were randomly
generated withk nonzero entries. The vector of target val-
ues is then computed as= ®w. Each algorithm is then

presented witht and® and attempts to learm.

Fig. 1(a) below depict results from these tests with-
7. We setNV = 20 and M is varied from30 to 100 allowing
the overcompleteness ratio, i&[/N, to vary from 1.5 to

5.0.

The SBL algorithm clearly outperforms the others both
in terms of success rate, i.e, the percentage of time the cor 3
rect (and only correct) bases are selected, and in terms c< 3§

I
15 2 25 3 35 4 45 5

(a) Success Rate for Exp. |

ccess Rate for Exp. Il
o
(2]

average sparsity (not shown). Also, the higher success rate.
acquire added significance in the noiseless case because,

given the conditions in [5], these are provably the minimum Fig: 1. Results with true sparsity = 7; (a) Experiment |
(noiseless), (b) Experiment Il (noisy)

sparsity solutions.

One possible explanation for the performance discrep-
ancy could be the different initialization strategies used with
each method. We can dismiss this possibility however when
we consider that the Basis Pursuit method achieves a globa[1] B. D. Rao, “Signal processing with the sparseness con-
maximum of the/;-norm and is thus impervious to initial
conditions. Thus, the superiority of SBL cannot be in its

ability to consistently reach global maxima, but rather in
the larger correlation between maxima in its cost function

and maximally sparse solutions.

4.2. Experiment Il

[2]

[3]

To explore a slightly more realistic scenario, we applied
each of the above algorithms (without any accommodations
for noise, e.g., the SBL algorithm was not allowed to adapt [4]
o2) to a low-noise filtering problem, namely, the recovery

of sparse FIR filter weights. For this example, thena-

trix was composed of delayed versions of an input white
noise sequence distributed A5(0,1). Random weights 5
were generated as before and the targets were computed as
t = dw + e wheree ~ A(0,0.01 - I). The results shown in

Fig. 1(b) clearly show the superior robustness of SBL.

5. CONCLUSIONS

[6]

In this paper, we have motivated the SBL cost function as [7]
a vehicle for finding models with maximal Bayesian evi-
dence. We have also proven that the local maxima of this

cost function are necessarily sparse. Furthermore, our sim{

ulation studies clearly indicate uniformly superior perfor-
mance over popular methods while retaining the desired 9]
theoretical optimality qualities the of FOCUSS class of al-
gorithms. As such, we have demonstrated that SBL is a

viable candidate for sparse signal reconstructions.
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