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ABSTRACT

Sparse Bayesian learning and specifically relevance vector
machines have received much attention as a means of achiev-
ing parsimonious representations of signals in the context
of regression and classification. We provide a simplified
derivation of this paradigm from a Bayesian evidence per-
spective and apply it to the problem of basis selection from
overcomplete dictionaries. Furthermore, we prove that the
stable fixed points of the resulting algorithm are necessarily
sparse, providing a solid theoretical justification for adapt-
ing the methodology to basis selection tasks. We then in-
clude simulation studies comparing sparse Bayesian learn-
ing with Basis Pursuit and the more recent FOCUSS class
of basis selection algorithms, empirically demonstrating su-
perior performance in terms of average sparsity and success
rate of recovering generative bases.

1. INTRODUCTION

Sparse signal representations from overcomplete dictionar-
ies find increasing relevance in a large number of appli-
cation domains [1, 2]. Moreover, attaining such represen-
tations is tantamount to solving regularized linear inverse
problems that have far-reaching significance. Consequently,
deeper insight into these issues is of both theoretical and
practical importance. The canonical form of this problem is
given by,

t = Φw + ε, (1)

whereΦ ∈ <N×M is a matrix whose columns represent a
possibly overcomplete basis(M À N), w is the vector of
weights to be learned,ε is noise, andt is a vector of targets.
In this vein, we seek to find weight vectors whose entries
are predominantly zero.

When Φ is selected such thatΦi,j = K(xi, xj) for
training vectorsxi, xj and kernel functionK(·, ·) satisfying
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Mercer’s condition, we recover the standard support vec-
tor machine (SVM) model. While successful for classifi-
cation and regression problems, however, SVMs are inade-
quate for finding sparse signal representations from possibly
overcomplete bases. In fact, SVM discriminate functions
are usually only quasi-sparse, with the number of support
vectors growing steeply with the size of the training set [3].
This is partially due to the fact that all outliers typically be-
come support vectors. Moreover, SVMs unfortunately re-
quire the estimation of a trade-off parameter.

More recently, relevance vector machines (RVM) have
been fashioned from a Bayesian perspective to address these
limitations to SVMs [3]. Although initially developed for
regression and classification problems, RVMs, or more gen-
erally, the sparse Bayesian learning (SBL) framework, pro-
vide a viable candidate for finding sparse signal represen-
tations. In this paper, we prove that the SBL cost func-
tion leads to sparse solutions of underdetermined linear in-
verse problems, providing solid theoretical justification for
adapting it to basis selection tasks. Furthermore, we empir-
ically substantiate the algorithm by comparing it with Ba-
sis Pursuit [2] (which finds minimum̀1-norm solutions via
linear programming (LP)) and the FOCUSS class of algo-
rithms [4, 5] (which find minimump-norm-like (̀ (p≤1)) so-
lutions via gradient factorizations). However, first we will
introduce a simplified derivation of the SBL algorithm as
a model selection tool based on maximizing Bayesian evi-
dence.

2. SPARSE BAYESIAN LEARNING

In contrast to the statistical learning theory that underlies
SVMs, SBL arises from a probabilistic perspective. In [3],
SBL is presented/derived as an approximation of the poste-
rior distribution of all unknowns given the data. Herein, we
derive the SBL cost function as an exact evaluation of the
Bayesian evidence. First, we will describe the two levels
of Bayesian inference that motivate SBL and subsequently,
we will detail how appropriate sparsifying weight priors are
estimated from the data.
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2.1. Levels of Bayesian Inference

Per the discussion in [6], a statistical modelH of dataD
is characterized by three components: (i) a functional form
parameterized by some weightsw, (ii) a prior distribution
over these weights,p(w|H), and (iii) the distribution of
the data given the model and fixed weights, i.e., the likeli-
hoodp(D|w,H). As we will see later, the power of modern
Bayesian inference lies in its ability to optimally select (ii)
and (iii).

The first level of inference assumes a given modelH
is fixed and deduces the parametersw by maximizing the
posterior weight densityp(w|D,H) ∝ p(D|w,H)p(w|H).
The normalizing termp(D|H) (referred to as the evidence
for H) is not needed since it is independent ofw. But how
do we know which modelH is most appropriate?

The second level of Bayesian inference involves com-
paring models/hypotheses, e.g.,H1 andH2, with respect to
the data. This is accomplished by evaluating the evidence
P (D|Hi), which can be computed by integrating over the
weights:

P (D|Hi) =
∫

P (D|w,Hi)P (w|Hi)dw. (2)

Models with excessive weights will typically have sharply
peaked likelihoodsP (D|w,Hi) relative to the size of the
weight space. Furthermore, if the priorP (w|Hi) is more or
less uniformly distributed, then large weight spaces will be
characterized by small prior densities in any given region.
Thus, when we integrate (2) we obtain a small value for the
evidence.

In contrast, if we have significantly fewer weights, then
the likelihood becomes less sensitive to the exact weight
values andP (D|w,Hi) tends to spread more about its peak
value. Moreover, the smaller weight space will also have a
higher density producing a larger evidence upon integration.

Thus, the evidence favors models that are parsimonious
and less sensitive to finely tuned weights.

2.2. Model Selection

Like SVMs, the functional form of our statistical modelH
remains fixed as in (1). Thus, most of our remaining ef-
fort in model selection must focus on finding an appropri-
ate weight priorp(w|H) and the likelihoodp(D|w,H). We
should note that the modern Bayesian methodology does not
attempt to select the ‘right’ priors or the FOCUSS approach
of selecting a fixed sparsity inducing prior. Rather, many
different priors can be compared corresponding to different
hypothesis about underlying truth. These hypothesis can be
empirically compared by evaluating the evidence for each
model [6].

So how is this accomplished? Following the reasoning
in [3], we first handle the likelihood by assuming a gaussian

noise model with unknown variance. Then we assume tar-
getst are distributed asp(t|w,H) ∝ N (t|Φw, σ2I) where
σ2 is unknown . We must now select an appropriate form for
the weight prior that reflects a preference for less complex
functions, e.g.,

p(w|H) = p(w|γ) =
M∏

i=1

N (wi|0, γi), (3)

whereγ is a vector ofM hyperparameters controlling the
prior variance of each weight. Also, we may specify a hy-
perpriorp(γi) on eachγi if we so desire. We are now in a
position to formulate the evidence for each candidate model
distinguished byγ andσ2,

p(D|H) = p(t|γ, σ2)

=
∫

p(t|w, σ2)p(w|γ)dw

= (2π)−N/2 |Σt|−1/2 exp
[
−1

2
tT Σ−1

t t

]
(4)

whereΣt , σ2I +ΦΓΦT and we have introduced the nota-
tion Γ , diag{γ}. The greater the evidencep(t|γ, σ2), the
more plausibleγ andσ2, which collectively demarcateH.

2.3. Sparse Bayesian Learning Algorithm

With SBL, the first level of Bayesian inference is trivial by
design; given the gaussian weight priors from (3), the pos-
terior density of the weights is gaussian, i.e.,

p(w|t, γ, σ2) ∝ N (µ, Σ), (5)

with µ = σ−2ΣΦT t andΣ = (σ−2ΦT Φ + Γ−1)−1. Thus,
the onus remains in estimatingγ andσ2. To accomplish
this, we employ the EM algorithm to maximizeP (γ, σ2|t) ∝
P (t|γ, σ2)p(γ)p(σ2) = evidence× hyperprior. This pro-
duces the update rule

γnew
i = Σi,i + µ2

i , (6)

which is iterated until convergence. Likewise, an update
rule for σ2 can be simply derived [3]. Also, whenΦ is
formed from kernel functions, we obtain RVMs.

3. GLOBAL CONVERGENCE TO SPARSE
SOLUTIONS

Sparse solutions are formally equivalent to the basic solu-
tions in LP, i.e., solutions with at mostN ¿ M nonzero
entries. In this section, we prove that all stable fixed points
of the SBL algorithm outlined above are sparse solutions.
To accomplish this we express our cost functionL as the
log of P (γ, σ2|t) giving,
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L = −1
2

log |Σt| − 1
2
tT Σ−1

t t (7)

where both terms come from the evidence and we have as-
sumed a uniform hyperprior onγ. Before we can proceed
further, we must introduce three intermediate results:

Lemma 1: − log |Σt| is convex with respect toΓ (or
equivalentlyγ).

Proof: By definition, Σt is an affine transformation of
Γ. Furthermore, in the space of psd matrices,− log |x| is a
convex function ofx (see e.g., [7]). Thus, it remains to show
that a convex function of an affine transformation is convex
(assuming the transformation preserves positive semidefi-
niteness).

Let f : <N ·N → < andg : <M → <N ·N be func-
tions such thath , f ◦ g : <M → <, with f convex. By
application of the chain rule for vectors, we can compute
Hh, the Hessian ofh, as a function ofHf andHgn , n ∈
{1, . . . , N · N}, which represent the Hessians off andg
respectively:

Hh =
N ·N∑
m=1

N ·N∑
n=1

[
∂gm

∂x

∂gn

∂x

T

Hf
m,n + Hgndiag

(
∂f

∂gn

)]
.

(8)
Now letg(x) = Ax+ b. ThenHgn = 0 ∀n and∂gm

∂x , wm

is constant∀x. We may then rewriteHh as,

Hh =
N ·N∑
m=1

N ·N∑
n=1

wnwT
mHf

m,n. (9)

It is then easy to show thatHh is psd since, for anyz ∈ <M ,
we have

zT Hhz = zT

(
N ·N∑
m=1

N ·N∑
n=1

wnwT
mHf

m,n

)
z

=
N ·N∑
m=1

N ·N∑
n=1

(zT wn)(wT
mz)Hf

m,n

=
N ·N∑
m=1

N ·N∑
n=1

anamHf
m,n

= aT Hfa ≥ 0, (10)

wherean , wT
n z ∈ <, a = [a1, . . . , aNN ]T , and the in-

equality follows sincef is convex. ThereforeHh is psd
everywhere and consequentlyh is convex.

Lemma 2: The termtT Σ−1
t t is constant over allγ satis-

fying theN linear constraintsb = Aγ if b = Φµ∗ for some
µ∗ as defined in (5) andA = Φdiag{ΦT (t− b)}.

Proof: By the matrix inversion lemma,

tT Σ−1
t t = σ−2tT (t− Φµ). (11)

Therefore, the constraintΦµ = b for someb clearly holds
tT Σ−1

t t constant. Moreover, it can be shown that over this
constraint surface,γ andµ are linearly related by

µ = ΓΦT (t− b) = diag{ΦT (t− b)}γ, (12)

completing the proof.
Lemma 3: Every local maximum ofL is a sparse.
Proof: The proof is by contradiction. Assume for the

moment thatγ = γ∗ is a non-sparse local maximum ofL.
Now consider the optimization problem,

max : − log |Σt|
subject to: Aγ = b, γ ≥ 0, (13)

whereA andb are as defined before. From Lemma 2, the
above constraints holdtT Σ−1

t t constant defined on a closed,
bounded convex polytope (i.e., we are maximizing (7) while
holding the second term constant). Also, Lemma 1 dictates
that the objective function is convex. Ifγ∗ is truly a local
maximum ofL, then a maxima of (13) should beγ = γ∗

as well. However, from [8] Theorem 6.5.3, all maxima of
(13) are achieved at extreme points and additionally, Theo-
rem 2.5 establishes the equivalence between extreme points
and basic feasible solutions, i.e., solutions with at mostN
nonzero values. Thus, ifγ∗ is not a basic feasible solution,
it cannot be a maximum of (13) and therefore cannot be a
local maximum ofL. Consequently, all local maxima must
be sparse.

Theorem: The SBL algorithm is globally convergent and
the stable fixed points are sparse solutions.

Proof: The EM algorithm is provably convergent to fixed
points. Furthermore, from Lemma 3, all stable fixed points
are sparse, completing the proof.

4. RESULTS

To quantify the performance of SBL relative to other meth-
ods, we completed a simulation study of each method on
synthetic data. For simplicity and ease of comparison, noise-
less tests were performed first. This facilitates direct com-
parisons because discrepancies in results cannot be attributed
to poor selection of the trade-off parameter (which balances
sparsity and quality of fit) in the case of FOCUSS and Ba-
sis Pursuit [2, 9]. To accommodate the low noise case with
SBL, we approximated the low noise limit by settingσ2 to a
small fixed value (10−8). Experiment I below details these
results. Experiment II involves a low-noise sparse filtering
application. In all cases, FOCUSS weights were initialized
using thè 2-norm solution while SBL was initialized with
small randomγ values. Basis Pursuit was performed using
the default MatlabLinprog command.
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4.1. Experiment I

Consistent with [4], we generated a randomN ×M Φ ma-
trix whose entries where each drawn from a standardized
gaussian distribution. The columns were then normalized
to unit `2-norm. Sparse weight vectorsw were randomly
generated withR nonzero entries. The vector of target val-
ues is then computed ast = Φw. Each algorithm is then
presented witht andΦ and attempts to learnw.

Fig. 1(a) below depict results from these tests withR =
7. We setN = 20 andM is varied from30 to 100 allowing
the overcompleteness ratio, i.e,M/N , to vary from 1.5 to
5.0.

The SBL algorithm clearly outperforms the others both
in terms of success rate, i.e, the percentage of time the cor-
rect (and only correct) bases are selected, and in terms of
average sparsity (not shown). Also, the higher success rates
acquire added significance in the noiseless case because,
given the conditions in [5], these are provably the minimum
sparsity solutions.

One possible explanation for the performance discrep-
ancy could be the different initialization strategies used with
each method. We can dismiss this possibility however when
we consider that the Basis Pursuit method achieves a global
maximum of thè 1-norm and is thus impervious to initial
conditions. Thus, the superiority of SBL cannot be in its
ability to consistently reach global maxima, but rather in
the larger correlation between maxima in its cost function
and maximally sparse solutions.

4.2. Experiment II

To explore a slightly more realistic scenario, we applied
each of the above algorithms (without any accommodations
for noise, e.g., the SBL algorithm was not allowed to adapt
σ2) to a low-noise filtering problem, namely, the recovery
of sparse FIR filter weights. For this example, theΦ ma-
trix was composed of delayed versions of an input white
noise sequence distributed asN (0, 1). Random weights
were generated as before and the targets were computed as
t = Φw + ε whereε ∼ N (0, 0.01 · I). The results shown in
Fig. 1(b) clearly show the superior robustness of SBL.

5. CONCLUSIONS

In this paper, we have motivated the SBL cost function as
a vehicle for finding models with maximal Bayesian evi-
dence. We have also proven that the local maxima of this
cost function are necessarily sparse. Furthermore, our sim-
ulation studies clearly indicate uniformly superior perfor-
mance over popular methods while retaining the desired
theoretical optimality qualities the of FOCUSS class of al-
gorithms. As such, we have demonstrated that SBL is a
viable candidate for sparse signal reconstructions.

1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Overcompleteness Ratio (M/N)

(a
) 

S
uc

ce
ss

 R
at

e 
fo

r 
E

xp
. I

Basis Pursuit
FOCUSS       
RVM          

1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Overcompleteness Ratio (M/N)

(b
) 

S
uc

ce
ss

 R
at

e 
fo

r 
E

xp
. I

I

Basis Pursuit
FOCUSS       
RVM          

Fig. 1. Results with true sparsity = 7; (a) Experiment I
(noiseless), (b) Experiment II (noisy)
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