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ABSTRACT

The paper addresses the problem of reconstructing the low-fre-
quency part of in-cylinder pressure of spark ignition engines by
analyzing structure-borne sound signals measured on the surface
of the engine block. The new pressure trace model proposed yields
accurate approximations with a minimal number of parameters.
When combined with the EM algorithm, a processing scheme re-
sults that provides fast pressure estimates and efficiently exploits
the information contained in the sound signal. Experimental results
with real measurement data show the potential of the reconstructed
signal to perform misfire detection and closed-loop spark ignition
timing tasks.

1. INTRODUCTION

In-cylinder pressure has been used for many decades as a stan-
dard tool to examine the state of reciprocating internal combustion
engines. The literature already contains numerous proposals that
exploit the information-rich pressure trace for very different real-
time diagnosis and control purposes, see e.g. [1]. However, despite
its unquestioned potential, the high cost and limited lifetime of sui-
table sensors have relegated its use almost exclusively to the test
bed, where it serves for both engine calibration as well as a perfor-
mance reference for other methods.

In this respect, ion sensing has recently gained attention as a
possible alternative. It consists of applying a DC bias to the spark
plug when it is not used for ignition, and then measuring the cur-
rent that flows through the circuit. Although it provides a direct
insight into the processes playing in the combustion chamber, the
ionization current is usually difficult to interpret, which limits its
commercial application to misfire detection even though schemes
for closed loop ignition timing already exist [2].

Structure-borne sound, obtained by accelerometers mounted
on the surface of the engine block, can also be used to gather in-
formation about the engine’s state. Apart from its reduced cost,
the sound signal has the advantage of being able to monitor se-
veral cylinders simultaneously. Generally this is only possible at
the expense of demanding signal processing procedures that sup-
press the interferences caused by the remaining engine aggregates.
Nevertheless, structure-borne sound has already proven its useful-
ness in certain specific applications like knock detection, where in
fact it has already established itself as the commercial standard in
production engines.

In this context, the paper focuses on the reconstruction of the
low-frequency part of the pressure trace by processing accelero-
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meter signals, showing its potential to perform closed loop igni-
tion control and misfire detection tasks. Wagner et al. [3, 4] have
already carried out interesting work in this field. The procedure
proposed in own paper also requires the prior identification of the
transfer function between pressure and sound signal. However, this
is not the main topic of the document and will be therefore briefly
outlined after presenting a simplified signal model. The key con-
tribution lies in the reconstruction procedure itself, which is based
in another understanding of the combustion process and in using a
new parametric model for the pressure traces. As it will be shown,
the EM algorithm [5] fits into this framework, yielding fast esti-
mates as well as providing additional flexibility for future impro-
vements. Finally, the performance of the proposed method with
real measurement data will be shown.

2. SOUND SIGNAL MODEL

Basically, the chosen approach relies on the assumption that the
sound signal consists of a superposition of K different sound com-
ponents, one for each cylinder, which are filtered versions of the
corresponding pressure signals. By introducing q−1 as the left shift
operator, i.e. q−myn = yn−m, the signal model can be written as

A(q−1)yn =
K

∑

k=1

Hk(q−1, n)xk,n + wn, (1)

or equivalently

yn =
(

1 − A(q−1)
)

yn +
K

∑

k=1

Hk(q−1, n)xk,n + wn. (2)

This representation describes the measured sound signal yn as the
combination of three terms: a filtered version of past sound samp-
les, with A(q−1) = 1 +

∑MA

m=1 amq−m, a cylinder-dependant
time-variant filtering Hk(q−1, n) applied to each pressure com-
ponent xk,n, and a noise term wn modelled as a white gaussian
stochastic process of unknown variance σ2

w .
Strictly speaking, the operator A(q−1) differs from the one

employed in [4] since it is not based on any physical considerati-
on. However, its inclusion into the model both simplifies the iden-
tification procedure and increases its performance, as experimental
evidence shows.

The periodic movement of the piston motivates the use of time-
variant transfer functions Hk(q−1, n). Assuming that the time-
variant character of the system is described by the piston positi-
on zk,n ∈ [zmin, zmax], a first-order Taylor expansion around z0

yields

Hk(q−1, n) ≈ H
(0)
k (q−1) + zk,n · H

(1)
k (q−1), (3)
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where for simplicity and without loss of generality z0 = 0 was
chosen. Accordingly, Hk(·) combines two traditional LTI impul-
se responses, one of which is modulated by the piston position.
Again, experimental evidence validates this approach: although
higher orders could be included in (3), the proposed form repres-
ents a good trade-off between accuracy and computational load
that adequately captures the behavior of the physical system, lea-
ding to parameter sets that are applicable over a wide range of
engine speeds [4].

3. IDENTIFICATION

The identification of all K transfer functions must be carried out
before addressing the reconstruction problem. Compared to [4],
the structure of the signal model employed here facilitates the ap-
plication of the prediction error method [6]. Since it is a standard
procedure, it will be discussed briefly.

First, a one-step predictor for yn is determined by taking the
conditional expectation of (2) given all the past sound samples
Yn−1 and the pressure traces up to instant n, Un. Since E {wn|
Yn−1,Un} = 0, it remains

ŷn =
(

1 − A(q−1)
)

yn +

K
∑

k=1

Hk(q−1, n)xk,n. (4)

Second, the optimal filter coefficients Â(·) and Ĥk(·) are obtained
by minimizing the power of the prediction error εn = yn − ŷn,

[

Â, Ĥ1, . . . , ĤK

]

= arg min
A,H1,...,HK

1

N

N
∑

n=1

ε2n . (5)

When using FIR filters of length MH for H
(0)
k (·) and H

(1)
k (·)

in (3), equation (5) turns into a standard least-squares problem that
can be solved straightforwardly. It yields fast estimates of the filter
coefficients and also facilitates the combination of different data
sets when speed and/or load-independent identification is required.
However, these issues lie beyond the scope of this paper.

4. RECONSTRUCTION

Former sections have been aimed to introduce the reader to the
somewhat peculiar sound model and to argue for the viability of
the associated system identification. The rest of the document will
consider that an adequate filter coefficient set is readily available.

The reconstruction of the pressure traces poses the problem
of recovering multiple signals from a single sound source. In this
SIMO framework, a direct inversion of the system is not possible
and must therefore be circumvented.

Already [4] suggested to estimate the pressure by solving a
fitting problem in the sound domain. This however supposes the
availability of an adequate parametrization of the pressure curves
and to know the exact information contained in each sound sample.
Both issues are now addressed in detail.

4.1. Pressure signal model

Some common properties arise among the pressure curves from
different combustions when plotted against the crank angle γ. The
signals always contain a component resulting from the compres-
sion of the air-fuel mixture that may vary in amplitude but usual-
ly shows the same shape. Concerning the pressure rise due to the
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Fig. 1. Decomposition of the sound signal.

combustion itself it is observed that, while the maximum can al-
ways be found in a certain angular range after TDC (top dead cen-
ter, the top upper piston position), the decay in the last part of the
expansion stroke remains qualitatively the same. Some turbulence
also shows up during the expulsion of the exhaust gases, but its
effect will be neglected in a first approach.

The considerations above suggest to decompose the pressure
trace in three parts: two pre-defined shapes, one associated with
the compression and another one modelling the final phase of the
combustion, and a third curve associated with the moving lobe.
The proposed parametric model for a single combustion is then

x(ϑ; γ) = α1 · u1(γ) + α2 · u2(γ) + α3 · v(γ − δ), (6)

where ϑ = (α1, α2, α3, δ)
′ and x(ϑ; γ) = 0 outside the interval

γ ∈ [−180◦, 180◦] around TDC. Section 5 will confirm that this
approach actually yields satisfactory results.

4.2. Sound signal decomposition

Since the goal is to estimate the pressure traces individually, it is
more convenient to describe the sound as a summation over all
combustions instead of over K cylinder-related signals as in (1).
Accepting a slight abuse of notation in order to keep the expressi-
ons simple, the model reads now

ỹn = A(q−1)yn =
∞

∑

l=−∞

ỹl,n(ϑl) + wn (7)

ỹl,n(ϑl) = Hl(q
−1, n)xl,n(ϑl) (8)

where ỹl,n(ϑl) describes the effect of the single combustion
xl,n(ϑl) in the sound domain, and the subindex of the transfer
function is shorthand for ‘(l mod K) + 1’.

Although (8) holds true, in practice only a few combustions
are actively involved in the sound perceived at a certain time in-
stant. This is illustrated in figure 1 by plotting five different con-
tributions of a 4-stroke engine one on top of another against the
continuous time t. For each sound component, the pressure trace
and the expansion caused by the filtering effect of the engine block
are displayed, respectively, with a continuous and a dashed line. To
simplify the drawing a constant motor speed was also assumed.

Consider now the task of estimating the pressure parameters ϑl

for the l-th signal. Intuitively, a data window between the starting
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t−(l) and ending point t+(l) of the combustion comprises all the
relevant information for this task.

In order to find a suitable expression for these variables, let
γ(t) describe the cumulative crank angle. It is a strictly monotonic
increasing function of t, therefore its inverse γ−1(·) exists and can
be used to connect both domains.

In a 4-stroke engine the combustions follow one another at
720/K◦ intervals. Let γ(0) be chosen, so that the crank angle for
the piston at TDC on the compression stroke is given by TDC(l) =
720
K

· l. Then, the limits for the l-th data window fulfill

t−(l) = γ−1(TDC(l) − 180
)

(9)

t+(l) = γ−1(TDC(l) + 180
)

+ T, (10)

where T symbolizes the length of the transfer functions (3). Be-
sides, the indices of the combustions covered by the data window
will range from L−(l) to L+(l), where

L−(l) = inf
λ

{

t−(l) < t+(λ)
}

(11)

L+(l) = sup
λ

{

t−(λ) < t+(l)
}

. (12)

Finally, defining n−(l) and n+(l) as the sample indices correspon-
ding respectively to t−(l) and t+(l) in the discrete time domain for
a given sample frequency fs,

n−(l) = dt−(l) · fse , n+(l) = bt+(l) · fsc , (13)

an estimate for the vector parameter ϑl can be found by solving
the following least-squares problem:

min
ϑL

−
(l),...,ϑL+(l)

n=n+(l)
∑

n=n
−

(l)

∣

∣

∣

∣

∣

∣

ỹn −

m=L+(l)
∑

m=L
−

(l)

ỹm,n(ϑm)

∣

∣

∣

∣

∣

∣

2

(14)

4.3. Application of the EM algorithm

The evaluation of (14) involves a great overhead, not only because
the parameters for (L+(l)−L−(l)) non-desired combustions must
be computed, but for the fact that a non-linear multidimensional
search for the δ’s in (6) must be carried out.

The EM algorithm offers and alternative solution. Using a pri-
or parameter set ϑ̂[i], EM first estimates each sound component
and then searches for the optimum pressure parameters individual-
ly, iterating both steps until convergence. The original multidimen-
sional problem is thus decomposed in a set of simpler ones that are
solved in parallel.

In the following, the results from [5] extended to unknown
noise variance and particularized to the case in hand are presented.

Estimation-Step
For λ = L−, . . . , L+, and n in the current data window (13),
approximate the sound components

ŵn = ỹn −

L+
∑

m=L
−

ỹm,n(ϑ̂[i]
m) (15)

s̃λ,n = ỹλ,n(ϑ̂
[i]
λ ) +

σ̂
2 [i]
λ

σ̂2 [i]
ŵn (16)

Maximization-Step
For λ = L−, . . . , L+, determine new parameter estimates

ϑ̂
[i+1]
λ = arg min

ϑλ

∑

n

∣

∣

∣
s̃λ,n − ỹλ,n(ϑλ)

∣

∣

∣

2

(17)

ϑ̂[i+1] =
(

ϑ̂
[i+1]
L

−

′, . . . , ϑ̂
[i+1]
L+

′
)′ (18)

and calculate the new noise variances

σ̂
2 [i+1]
λ =

1

N

∑

n

∣

∣

∣
s̃λ,n − ỹλ,n(ϑ̂

[i+1]
λ )

∣

∣

∣

2

+ . . .

+ σ̂
2 [i]
λ (1 −

σ̂
2 [i]
λ

σ̂2 [i]
) (19)

σ̂2 [i+1] =

L+
∑

m=L
−

σ̂
2 [i+1]
λ (20)

Finally, just the current implementation of the M-step (17) re-
mains to be sketched.

Three amplitudes and a non-linear parameter δ must be deter-
mined for each λ. Simplifying the notation again and considering
that the actual data window contains N samples, let us define the
vectors s̃λ = (s̃λ,1, . . . , s̃λ,N )′ and xλ = (xλ,1, . . . , xλ,N )′. Si-
milarly, let matrix C contain the samples pertaining to the two
pressure curves with constant shape, C = [u1, u2], and vector
v(δλ) describe the movable lobe centered at δλ. Filtering the pres-
sure components with the transfer function Hλ(·) yields C̃ and
ṽ(δλ), respectively. Then, using common algebra operations and
the properties of projection matrices, it is easy to show that

δ̂λ = arg max
δλ

(

ṽ(δλ)′ P⊥

C̃
s̃λ

)2

(

ṽ(δλ)′ P⊥

C̃
ṽ(δλ)

) (

s̃λ
′
P⊥

C̃
s̃λ

) , (21)

where P
⊥

C̃
is the projection matrix onto the space orthogonal to the

one spanned by the columns of C̃. The term (s̃λ
′
P

⊥

C̃
s̃λ), constant

in δλ, was introduced to show the similarity of (21) with a correla-
tion factor. Once δ̂λ is known, the linear parameters are calculated
solving

D̃
′
D̃ · (α1, α2, α3)

′ = D̃
′ s̃λ , (22)

with D̃ = [C̃, ṽ(δ̂λ)].
One last remark concerning EM should be made before pro-

ceeding to the last section. Notice how the algorithm not only sim-
plifies the computation of the parameter estimates, it also exploits
the data more efficiently. Since consecutive data windows overlap,
prior estimates of the pressure traces can be used in a twofold man-
ner: first, as good initial estimates for the combustions contained in
the current window; second, to “clean” the sound signal, since the
l-th window contains less information about past combustions and
therefore they would be estimated less accurately. Both strategies
save computations and speed up the convergence.

5. EXPERIMENTAL RESULTS

The measurement data were collected from a four cylinder, 1.8 l,
turbo charged, spark ignition test bed engine. All cylinders were
equipped with a spark plug with integrated pressure sensor. Four
acceleration sensors were mounted on the intake side of the engine
approximately 10 mm below the cylinder head, each one close to
the axis of one of the cylinders. Additionally, the crank angle was
measured via a crankshaft sensor. After appropriate filtering, all
the signals where downsampled to 2.5 kHz.

Due to the lack of space, the performance of the proposed me-
thod can only be illustrated exemplarily by processing the sound
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Fig. 2. Parametric pressure model, results with training data.

signal from the sensor at cylinder one, for high load and for the
relatively high engine speed of 4,000 rpm. A training data set
with 30,000 samples was processed to identify the transfer func-
tions (3), for which impulse response lengths of MA = 25 and
MH = 45 were selected. 100 misfired and 500 normal combusti-
ons were first interpolated and then heuristically combined to pro-
duce the three curves pertaining to the parametric pressure model
(6). Figure 2 shows the results after reconstructing the 500 combu-
stions used for training. In Fig. 2(a), the worst reconstructed pres-
sure trace is plotted together with the normalized shape of the three
components. On the right hand side, a scatter plot asserts the good
correlation between original and estimated amplitude of the ma-
xima (b). Below, a histogram displays the error committed when
estimating the position of the pressure maxima (c), having an ave-
rage value of 0.07◦ and a standard deviation of 0.98◦. The model
is then able to describe the pressure traces satisfactorily with a mi-
nimal set of parameters.

A different data set at the same operating conditions was used
to test the reconstruction algorithm. The search for δ in (21) was
performed using a grid with 1◦ separation. EM was iterated until
the δ estimates from all but the two last combustions in the l-th
data window (those with indices L+(l) and L+(l) − 1) remai-
ned unchanged. After convergence, the current estimate for the l-
th pressure trace was removed from the system and used to clean
the sound signal. Besides, to further speed up the system, the li-
near parameters where jointly estimated by solving (14) instead of
using (22).

Figure 3 summarizes the results obtained after evaluating 1000
combustions. Two signals were considered: the first one consisted
of the synthetic superimposition of the pressure traces from the 4
cylinders, aiming to determine the hypothetical capability of the
system when dealing with “pure” pressure signals; the second one
was the sound signal from sensor 1, as already mentioned.

The scatter plots in the upper half of the figure confirm that
the parametric model performs well when working with the aggre-
gate pressure (a). The dispersion of the estimated pressure maxi-
ma shows that the processing of the sound signal is significantly
more challenging (b). Nevertheless, the misfired combustions still
cluster together in the low left corner of the picture, making the
reconstructed pressure a possible candidate for a misfire detection
scheme.

The lower half of figure 3 shows the histograms of the error
committed when estimating the position of the pressure maxima.
The negligible degradation of (d) compared to (c) asserts the po-
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Fig. 3. Reconstruction results using superimposed pressure, left,
and sound, right, as input signals.

tential of the reconstructed pressure to serve in closed loop sche-
mes for spark ignition timing [1]. Without forgetting that under
the current conditions a sampling period corresponds on average
to 9.6◦ crank angle, the reconstruction yields an error with mean
0.04◦ and a standard deviation of 4.78◦.

6. CONCLUSIONS

The EM algorithm perfectly matches the needs of the addressed
problem. Together with the parametric pressure model, the proce-
dure yields fast and reliable estimates that make a future real-time
implementation conceivable. Better results are expected by combi-
ning several sound sensors to jointly reconstruct the pressure and
reduce the variance of the amplitude estimates. The EM framework
facilitates its implementation, since just a scenario with a single
combustion must be evaluated. More details, including a statistical
test to perform misfire detection, will be given in a future paper.
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