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ABSTRACT

In this paper, we introduce a locally reduced-rank op-
timal filtering that is a generalization of the globally
reduced-rank optimal filtering studied extensively as a
fundamental tool in signal processing applications. Af-
ter formulating the problem of the locally reduced-rank
optimal filtering, we present a closed form solution to
the problem in terms of the SVD. Moreover, in a way
similar to the techniques shown recently by Hua et
al, we deduce a numerical algorithm converging glob-
ally and exponentially to the solution without pass-
ing any computation of the eigen value decomposition
(or SVD). Numerical example shows that the proposed
algorithm converges efficiently to the locally reduced-
rank optimal filter that realizes ideal trade-off between
the rank-reduction and the estimation accuracy.

1. INTRODUCTION

In this paper, we address a locally reduced-rank optimal
filtering that is a generalization of the globally reduced-
rank optimal filtering studied extensively as a funda-
mental tool in signal processing applications asking for
(i) data or model reduction, (ii) robustness against
noise or model errors, or (iii) high computational ef-
ficiency [1-10] (A unified treatment of the (globally)
reduced-rank filtering is presented in [10]). The cur-
rent strong demand for reduced-rank filtering arises
from the growing disparity between the large num-
ber of degrees of freedom in the next generation of
wireless communication systems, radar systems, sonar
systems, etc., and limitations on sample support size
due to high mobility, high sensitivity to small move-
ments/perturbations, etc [11,12].

Consider the two random processes x; € R™ and
Y, € R™. Define, for r < min{m,n},

R™*™(r) :={T € R™*" | rank(T) < r}.

Then the (globally) reduced-rank optimal filter [10] is
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defined as Tgopr € R™*™(r) that minimizes
Jo(T):=E [tr {W(yk —Taxi)(y, — T:ck)t}] , (1)

YT € R™*"(r), where E denotes statistical expecta-
tion (or sample averaging) and W € R™*™ is a given
positive definite (weighting) matrix.

Let Ry, := E{zyz}} € R"*",R,, := E{y,y.} €
R™*™ and R, := E {y,z}} € R™*". Then we have

Taopt = W™ 2trun, {Wl/QRyz(Rif)T} (Ry)T.
(2)

[Note: (i) The minimizer of Jg with W = R} agrees
with that of Jye(T) := det [E {(y, — Txr)(y, — Txr)'}
(See [10]). (ii) The above result (2) can be derived
simply based on Lemma 1 in Sec.2. (iii) For sim-
plicity, in this paper, we only discuss the real filter-
ing although the all discussion can be extended with-
out any difficulty to the corresponding complex filter-
ing.] The reduced-rank constraint and the (globally)
reduced-rank optimal filter Tqopr are quite attractive
not only because finding suitable subspace is a key in a
wide range of signal processing [13—16] but also because
Taopt € R™*™(r) well suites to applications including
wireless communications and telephone networks [17]
where the effects of multi-path signals and cross-signal
interference are in general modelled, with multiple sen-
sors and multiple transmitters, by reduced rank ma-
trices [8]. Moreover several successive approximation
techniques [9, 10] can generate, without computing any
eigenvalue decomposition (or SVD), matrix sequences
converging globally to Tzopt under a condition where
R, is nonsingular and rank(Tgop) = 7.

On the other hand, by defining (i) submatrices T'/) €
R™*m5 (j=1,...,p) of T by T = [TMT® ...T®P)] ¢
R™*™ (hence Y-¥_, n; =n) and (ii) random processes

. t
2 (G =1,....p) by ax = (@) (@) @))
we obtain the equivalent expression [of (1)]:

J(TW, TP = E[tr {W (2x2})}],  (3)
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where z, 1=y, — Z?Zl T(j)mgcj). Each random process

2z (j = 1,...,p) contributes respectively, through
TV, to approximate y,. Obviously this interpreta-
tion has substantial meaning in many applications in-
cluding higher order statistical signal processing. For
example, the vector valued version [18] of the Volterra
filtering (i.e., optimal polynomial filtering) [19] is a nat-
ural higher order generalization, of the (vector valued)
Wiener filtering, where J:;c] ) can be a vector valued pro-
cess of which components are monomials, having speci-
fied total degrees, of an input random process. Because
(i) the major burden of the application of polynomial
filtering is in general its huge computational complexity
and (ii) the rank-reduction usually yields computation-
ally efficient structure, it would be of great interest in
the achievable performance of the polynomial filter us-
ing T7U) (j =1,...,p) satisfying the pre-specified con-
ditions rank (T')) < r;. However the results on the
globally reduced-rank optimal filtering do not answer
to this primitive question because we need analyses in
the case where the rank constraints are imposed inde-
pendently on each T\,

In this paper, after formulating the problem of the
locally reduced-rank optimal filtering, we present its so-
lution for p = 2 and r, = min{m,n,} in terms of
the SVD. Moreover, in a way similar to the techniques
in [9,10], we present a numerical algorithm converg-
ing globally to the solution without passing any com-
putation of the eigen value decomposition. Numerical
example shows the effectiveness of the proposed algo-
rithm. (Note: All proofs are omitted due to lack of
space.)

2. PRELIMINARIES

Throughout this paper, we use the following notations:

R: the set of all real numbers,

At the transposition of A € R™*",

R(A): the range space of A € R™*"

At the Moore-Penrose pseudoinverse of
A e R

A2 the positive semi-definite square root

of positive semi-definite A € R**™,
[ A : the Frobenius norm of A € R™*".

Let A = UXV?T be the singular value decomposition
(SVD) of A € R™*™, where U := [uq,..., U] € R™*™
and V := [vy,...,v,] € R"*™ are unitary matrices,
and ¥ := diag{o1,...,0min{m,n}} € R™*" is a diag-
onal matrix with nonnegative diagonal elements ar-
ranged in a nonincreasing order: o; > o9 > --- >

Omin{m,n} > 0. Forr € {0,1,... min{m,n}}, trun,(A)

= Y, osuvl satisfies rank (trun,.(A)) < r. (For
details on the SVD and its numerical computation, see
for example [20].)

The following fundamental result is useful in the

analyses of the locally reduced-rank optimal filtering.

Lemma 1 For a given symmetric matric A € R**"
and a matriz B € R™*" | define a function © : R™*" —
R by

O(X) :=tr{W(XAX" - 2BX")},

where W € R™*™ s a positive definite (weighting)
matriz.

(a) Suppose that © is bounded below. Then A is a
positive semi-definite matriz and VX € R™*",

O(X) > O(BAT) = —||W'/2B(A12)"|12.
(The minimizer is unique if A is nonsingular.)

(b) Suppose that © is bounded below. Then for any
r€{0,1,...,min(m,n)},
Xr= Wﬁl/ztrunT{Wl/zB(Alﬂ)T}(A1/2)T

satisfies X € R™*"(r) and

min{m,n}

2.

i=r+1
< O(X), VX e R™ " (r),

O(X}) = O(BA" +

min{m,n}

where {o;},_; are singular values of
WY/2B(AY?)t, arranged in a nonincreasing or-
der: 01> 02 2+ 2 Omin{m,n} = 0-

3. LOCALLY REDUCED-RANK OPTIMAL
FILTER

As announced in Sec.1, we consider the following prob-
lem that is a generalization of the globally reduced-rank
optimal filtering problem [1-10].

Problem 1 (Locally reduced-rank optimal filter) Let

2 e R (j=1,2,..
. Nt

processes. Suppose that we have R;; := E {:cgj) (:cgf)) } €

.,p) and y, € R™ be random

ot
R™ ™ Ry; = E{yk(wgf)) } € R™*™ and Ry, =
E{y,yi} € R™*™ V(i,j) € {1,2,...,p}>. Then the
problem is to find Tgo)pt e R™*™(r;) (j =1,2,...,p)
satisfying

VI e ™" (r;),5 = 1,2,...,p, (4)
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where Jp, is defined in (3) and 0 < r; < min{m,n;}
(5 =1,...,p) are pre-specified ranks. We call {Ti{))pt}g?zl
the locally reduced-rank filter.

Next proposition presents a closed form expression
of a locally reduced rank optimal filter for p = 2 and
ry = min{m,n, }.

Proposition 1 For p =2, r; = min{m,n;} and r <
min{m,ns2}, we have a closed form solution to Problem
1 as

Tﬁa)pt = (By— [(/o)ptRz 1)R1 1
T, = WM Ptrun,, [WYA(Ry2 - RyaRiatRio)

{(Ra2,2 — R2,1R1,1TR1,2)1/2}T]
{(Ra2,2 — R2,1R1,1TR1,2)1/2}T-

(Note: Lemma 1(a) guarantees the positive semi defi-
niteness of Ry » — R271R1,1TR1,2-)

Thanks to Proposition 1, we deduce the next algo-
rithmic solution to Problem 1. The algorithm shown
in Proposition 2 can approximate iteratively, without
passing any computation of eigen value decomposmon
or SVD, the locally reduced-rank optimal filter {T i) 12
in Proposition 1 . In particular, Proposition 2 for
R;1 =0 (i = 1,2) reproduces the algorithms in [9, 10].

LoptJj=1

Proposition 2 (Successive alternating minimization)
Suppose that Ry » — R271R171TR172 is nonsingular and
rank( Lopt) =r3. Define matriz sequences {F(k)}72, C
R (g \R™ 7 (ry—1) and {G(k) }32, C R™>"2(r;)\
R™2 %72 (ry—1), with arbitrarily given G(0) € R™*"2(r5)\
Rr2 Xm2 (7‘2 — 1), by

F(k + ].)G(k) (R2 5> — Ry 1R1 1TR1 2) Gt(k)
= (Ry2— Ry 1R11 R ) G (k),
(Ft(k + ODWF(k+1)) Gk +1) (Ro2 — Ro1Ri1 1Ry )
= Ft(k + ].)W (Ry72 - Ry,lRLlTRLz) .
Then the matriz sequences {TV) (k )}k (5 =1,2) de-

fined by TP (k) := F(k)G(k) and T (k) ( v —
F(k)G(k)Ry1 )Ry 1" satisfy

lim |79 (k) - T

k— oo Lopt

=0,(=1,2). ()

(Note: In (5), {TW(k)}2, converges exponentially.)

260

240
220 A
200} ¥
,_4>
180} *
\ r2=4
160} a
r=5
140} £
RN 2
120 5 10 15 20 25

Iteration index, k

Fig. 1. Convergence of Jr, by the formula in Proposi-
tion 2

4. NUMERICAL EXAMPLES AND
REMARKS

To examine the performance of the proposed locally
reduced-rank optimal filtering and its successive ap-
proximation technique (in Proposition 2), we consider
the approximation, by the locally reduced-rank filter,
of the ARMA(2,2) process (Y& ),y [1, 13] characterized
by the rational function 1_1.70223;1'2;;.719022—2 (This
ARMA process corresponds to the USASI signal used
vastly to simulate speech signals. Its generation routine
can be found in http://www.ee.ic.ac.uk/hp/staff/
dmb/voicebox/txt/usasi.txt). The vector-valued test
processes are simply defined as y;, := (Yk, - - -, Yrtm—1)"
and xy, := (Tg, ..., Trin_1)’, where (Tk) ez 1s the noise
process of zero mean, i.i.d. Gaussian random variable
N(0,1) and fed to the ARMA(2,2) to produce (yx) .-
We set (m,n) := (50,40) and (n1,n2,71) = (10,30, 10),
and employed W := I35y € R*°%50 (the identity ma-
trix) as the weighting matrix for all filters. We ap-
plied the formula in Proposition 2 to obtain the lo-
cally reduced-rank optimal filters for ro = 4,5,6. As
a fair starting condition, G(0) = diag{l,1,...,1} €
Rz %30 ig employed in all cases. Fig.1 dipicts the con-
vergence behaviors of Ji (k) := Ji (TW(k), T?(k)).
Fig.2 shows the convergence behaviors of Dist(k) :=
{ITO k) = TP + [T (k) = T2, 212, As ex-
pected, the proposed algorithm converges efficiently to
the locally reduced-rank optimal filter that realizes rea-
sonable trade-off between the rank-reduction and the
estimation accuracy.

Finally, we remark that the idea of the algorithm
shown in Proposition 2 could be extended naturally to
more general cases of Problem 1. Further consideration
in this direction will be reported elsewhere.
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Fig. 2. Convergence of Dist by the formula in Propo-
sition 2
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