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ABSTRACT

This paper focuses on decentralizedH∞ filtering problem for in-
terconnected linear systems. The problem we address is to find a
decentralized filter where each local filter is based only on local
available information on its own subsystem and the overall filter-
ing error is totally asymptotically stable and theL2-gain from the
exogenous noise input to the filtering error less than a prespecified
level. This paper shows that the decentralizedH∞ filtering prob-
lem can be solved by using linear matrix inequality (LMI) tech-
niques, which are numerically efficient due to recent advances in
convex optimization.

1. INTRODUCTION

A number of large-scale systems founded in the real world are
composed of a set of small interconnected subsystems, such as
power systems, digital communication networks, economic sys-
tems and urban traffic networks. The filtering for processing of
data in large-scale interconnected dynamic systems often involves
the measurement and manipulation of a great numbers of variables.
It is generally impossible to design a fully centralized filter where
all measurements from all the sensors are gathered in one vector
and are processed centrally, and it is also too costly and numeri-
cally unreliable even if they can be implemented. These difficulties
motivate the development of decentralized filtering theory where
each local filter is constructed independently on the basis of its
own performance criterion and locally available information, thus
processes its own data of each subsystem. Therefore the computa-
tional requirements can be significantly reduced by the decentral-
ized technique.

During the past few years, the Kalman filtering method has
been extended to the decentralized filtering of large-scale systems.
In [2, 6, 12] and references therein, A decentralized hierarchical
or two-stage Kalman filtering structure was proposed, that is, the
local filters (processor) process their own data in parallel to yield
the best possible local estimates in the first stage (low-level) and
their solutions are then sent and fused by the central or master filter
(processor) to make a best possible global estimate in the second

stage (high-level). In [8, 13, 11, 14] and references therein, the
decentralized filtering approach has no central filter (processor),
i.e., the decentralized filter with an non-hierarchical structure, but
employs the principle of information exchange among the local
Kalman filters. That is, in the dynamical model of the each local
estimator, there is an interconnected term related to the estimated
states of other local estimators. This strategy yields in general a
stable and globally suboptimal estimate for the overall system.

Note that the filtering methods mentioned above do not yield
fully decentralized, and have still large communication and com-
putational loads, and the estimate results are difficult to be applied
to decentralized control of large-scale systems [10]. An fully de-
centralized filter is that the data of each sensor is processed locally
and there is no central processing filter and information exchange
among the local filters. It is well known that if standard filter-
ing theory is used to design local filter where the subsystem are
treated as if they were decoupled, then this passive filter design
without any regard for the interaction terms may be overly con-
servative and result in unsatisfactory performance of the system
when the local filters are used in the composite system with inter-
connections. For example, it can easily be shown that the filtering
error for each subsystem will be governed by the unaccounted in-
terconnection term and there will in general be no guarantee for
the convergence of the estimate. It is therefore necessary to ac-
count for the interaction term in designing the fully decentralized
filter. This paper belongs to this case.

On the other hand, the existing centralized and decentralized
filters are derived under the assumption that the noise sources are
‘white’ processes with known statistics. In many applications, this
would be an excessive prior knowledge of the nature of noise. This
motivated the study of filtering in anH∞ framework, which re-
flects the worst-case “gain” of the system. In theH∞ setting,
the exogenous noise sources are assumed to be energy bounded
rather than Gaussian. AnH∞ filter is designed to guarantee a pre-
scribedH∞ performance for the filtering error for all admissible
noises. Although many results in centralizedH∞ filtering have
been obtained, see [9, 15, 16] and references therein, however,
to my best knowledge, theH∞ filtering method is not applied to
large-scale systems yet. In this paper, we will design a fully de-
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centralizedH∞ filter which such that the overall filtering error is
totally asymptotically stable and theL2-gain from the exogenous
noise input to the filtering error less than a prescribed level. In this
paper, we also show that the decentralizedH∞ filtering problem
can be solved in terms of linear matrix inequalities (LMI’s). An
efficient algorithm exists for solving LMI’s [5].

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following interconnected linear systems which con-
sists ofN subsystems:

ẋi = Aixi + Biωi +

N∑
j=1,j 6=i

Aijxj

yi = Cixi + Diωi (2.1)

zi = Lixi + Eiωi, i = 1, 2, · · · , N
wherexi ∈ <ni is the state of theith subsystem,ωi ∈ <qi is
the exogenous noise input belonging toL2[0 ∞), yi ∈ <mi is
the measured output of theith subsystem,zi ∈ <ri is the signal
to be estimated,Ai, Bi, Ci, Di, Li, Ei andAij are known real
constant matrices with appropriate dimensions. Furthermore, the
Aij represents the interaction effect between theith subsystem and
thejth subsystem.

In this paper, we will consider decentralized filter of the form:

ẋif = Aifxif + Bifyi

zif = Cifxif + Difyi
(2.2)

wherexif ∈ <ni andzif ∈ <ri are the estimated state (filter
state) and the estimate of output signalzi, respectively,Aif , Bif ,
Cif andDif are constant matrices with appropriate dimensions to
be designed latter.

Define the filtering error as

ei = zi − zif . (2.3)

Then, the filtering error dynamic model is given by

ẋie = Aiexie + Bieωi +
N∑

j=1,j 6=i

Ãijxj

ei = Liexie + Eieωi

(2.4)

wherexie = [xT
i xT

if ]T and

Aie =

[
Ai 0

BifCi Aif

]
, Bie =

[
Bi

BifDi

]
, Ãij =

[
Aij

0

]
,

Lie = [Li −DifCi − Cif ], Eie = Ei −DifDi

In this paper, we deal with thedecentralizedH∞ filtering
problem for the interconnected system (2.1). More precisely,given
scalarsγi > 0, i = 1, 2, · · · , N , we are concerned with the design
of decentralized filter (2.2) for each subsystem such that the overall
error dynamics (2.4) is totally asymptotically stable and theL2-
gain from the exogenous noise inputω = [ωT

1 · · · ωT
N ]T to the

filtering error e = [eT
i · · · eT

N ]T less thanγ = [γ1 · · · γN ]T

in the sense that
N∑

i=1

∫ N

0

eT
i eidt <

N∑
i=1

γ2
i

∫ N

0

ωT
i ωidt + δ(xe0) (2.5)

for all ωi ∈ L2[0 ∞), whereδ(xe0) with δ(0) = 0 is a real-
valued function of the initial statexe0 = [xT

1e(0) · · · xT
Ne(0)]T .

Remark 2.1 In the above problem statement,γi, i = 1, 2, · · · , N
can be regarded as the prespecified level of disturbance attenua-
tion for each individual subsystem. Whenγi = γ0, i = 1, 2, · · ·N ,
(2.5) becomes

‖e‖22 = γ2
0‖ω‖22 + δ(xe0) (2.6)

for all ωi ∈ L2[0 ∞). This case is called asstandard decentral-
izedH∞ filtering problem.

Remark 2.2 Note that the decentralized state estimation problem
is a special case of the above decentralizedH∞ filtering problem
with Li = I, Ei = 0, Cif = I andDif = 0.

Remark 2.3 The decentralized filter (2.2) is fully decentralized
form where the local filter is based only on the local available
information of its own subsystem, and there is not hierarchical
structure and information exchange among other local filter.

3. ANALYSIS OF DECENTRALIZED H∞ FILTER

The decentralizedH∞ filter analysis problem associated with the
interconnected system (2.1) is as follows: Givenγi > 0, i =
1, 2, · · · , N , and a decentralized filter of the form (2.2), we will de-
termine conditions under which the error dynamics (2.4) is totally
asymptotically stable and satisfies (2.5) for allωi ∈ L2[0 ∞).

The following theorem give the main result of theH∞ filter
analysis.

Theorem 3.1 The following conditions, all guaranteeing the so-
lution to the decentralizedH∞ filter analysis problem associated
with the interconnected system (2.1) and the filter (2.2), are equiv-
alent.

(i) There exist matricesPi = Pi > 0 andQij = Qij > 0,
i, j = 1, 2, · · · , N , such that

L1 =

[
Ξi PiBie + LT

ieEie

BT
iePi + ET

ieLie ET
ieEie − γ2

i I

]
< 0 (3.1)

where

Ξi =PiAie + AT
iePi + PiR

∗
i Pi + HT

ieQ
−1
ie Hie + LT

ieLie

Ri =

N∑
j=1,j 6=i

Qij , R∗i =

[
Ri 0
0 0

]
, (3.2)

Hi =[AT
1i AT

2i · · ·AT
i−1,i AT

i+1,i · · ·AT
Ni]

T , (3.3)

Hie =[Hi 0] (3.4)

Qie = diag{Q1i, · · · , Qi−1,i, Qi+1,i, · · · , QNi} (3.5)

(ii)There exist matricesPi = Pi > 0 andQij = Qij > 0,
i, j = 1, 2, · · · , N , such that

L2 =

=




PiAie + AT
iePi PiBie LT

ie HT
ie Pi

[
I
0

]
Ri

BT
iePi −γ2

i I ET
ie 0 0

Lie Eie −I 0 0
Hie 0 0 −Qie 0

Ri[I 0]Pi 0 0 0 −Ri




< 0 (3.6)

whereRi, Hie andQie are given in (3.2)–(3.5).
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Proof: DefineVi = xT
iePixie, the time derivative ofVi along

the state trajectory of the system (2.1) is

V̇i =xT
ie(PiAie + AT

iePi)xie + 2xT
iePiBieωi

+2xT
iePi

N∑
j=1,j 6=i

Ãijxj (3.7)

Notice that for any vectorsx, y and any matrixQ = QT > 0
of appropriate dimensions

2xT y ≤ xT Qx + yT Q−1y

Hence, we have that for any some symmetric positive matrices
Qij > 0, i, j = 1, 2, · · · , N , the following inequalities hold

2xT
iePi

N∑
j=1,j 6=i

Ãijxj =

N∑
j=1,j 6=i

2xT
iePi

[
I
0

]
Aijxj

≤xT
iePi

N∑
j=1,j 6=i

[
I
0

]
QijPi[I 0]xie

+

N∑
j=1,j 6=i

xT
j AT

ijQ
−1
ij Aijxj

=xT
iePiR

∗
i Pixie + ∆ij (3.8)

whereR∗i is as in (3.2) and

∆ij
∆
=

N∑
j=1,j 6=i

xT
j AT

ijQ
−1
ij Aijxj

Also define

∆ji
∆
=

N∑
j=1,j 6=i

xT
i AT

jiQ
−1
ji Ajixi

Then, we have that

N∑
i=1

∆ij =

N∑
i=1

∆ji (3.9)

and

∆ji =

N∑
j=1,j 6=i

xT
ie

[
AT

ji

0

]
Q−1

ji [Aji 0]xie = xT
ieH

T
ieQ

−1
ie Hiexie

(3.10)
It follows from (3.7), (3.8) and (3.10) that

V̇i + eT
i ei − γ2

i ωT
i ωi

≤xT
ie(PiAie + AT

iePi + PiR
∗
i Pi)xie + 2xT

iePiBieωi + ∆ij

+xT
ieL

T
ieLiexie + 2xT

ieL
T
ieEieωi + ωT

i ET
ieEieωi − γ2

i ωT
i ωi

=[xT
ie ωT

i ]L1

[
xie

ωi

]
+ ∆ij −∆ji (3.11)

Thus, in view of (3.9) and (3.11), we have

N∑
i=1

[
V̇i + eT

i ei − γ2
i ωT

i ωi

]
≤

N∑
i=1

[xT
ie ωT

i ]L1

[
xie

ωi

]
(3.12)

Hence, ifL1 < 0, then it follows from (3.12) that whenωi =
0, the error dynamics (2.4) is totally asymptotically stable.

Integrating the above inequality (3.12) over[0 ∞), and noting
thatVi(xie) ≥ 0, we have

N∑
i=1

∫ N

0

eT
i eidt <

N∑
i=1

γ2
i

∫ N

0

ωT
i ωidt + δ(xe0) (3.13)

whereδ(xe0) =
∑N

i=1
Vi(xie(0)). Therefore, the decentralized

H∞ filter analysis problem associated with the interconnected sys-
tem (2.1) and the filter (2.2) is solved.

(ii) Using Schur complements, we obtain that the inequalities
(3.1) and (3.6) are equivalent. The proof of this theorem is com-
pleted. 2

4. SYNTHESIS OF DECENTRALIZED H∞ FILTER

In this section, we will deal with the decentralizedH∞ filter de-
sign problem defined in Section 2. To this end, we need the fol-
lowing assumption:

Assumption 4.1
(a) Ai is asymptotically stable
(b) (Ai Ci) is detectable,i = 1, 2, · · · , N .

Note that in the matrix inequalities (3.1) and (3.6), the decen-
tralizedH∞ filter parametersAif , Bif , Cif andDif are unknown
and occur in nonlinear fashion, therefore, (3.1) and (3.6) can not
be considered as an LMI problem. In the sequel, we shall use
a method of changing variables [3, 4] such that (3.6) is reduced
to two LMIs for given positive matricesQij , i, j = 1, 2, · · · , N .
Therefore, the decentralizedH∞ filter parameters can be designed
based on LMI technique.

First, partitionPi and its inverse as

Pi =

[
Si Ni

NT
i Vi

]
, P−1

i =

[
Ti Mi

MT
i Ui

]
(4.1)

whereSi, Ti, Mi, Ni ∈ <ni×ni .
Note that the identityPiP

−1
i = I gives

MiN
T
i = I − TiSi (4.2)

Define

φi1 =

[
Ti I

MT
i 0

]
, φi2 =

[
I Si

0 NT
i

]
(4.3)

Then the following identity holds

Piφi1 = φi2

It also follows that

φT
i1Piφi1 = φT

i1φi2 =

[
Ti I
I Si

]
(4.4)

Now, define the new controller variables as

Cif
∆
= CifMT

i + DifCiTi (4.5)

Bif
∆
= NiBif (4.6)

Aif
∆
= SiAiTi + NiBifCiTi + NiAifMT

i (4.7)
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Therefore, given positive definite matricesTi, Si and invert-
ible matricesDif , Mi andNi, the controller matricesAif , Bif

andCif can be uniquely determined byAif , Bif andCif .
We are now in the position to state our main result on decen-

tralizedH∞ filter design based on an LMI approach.

Theorem 4.1 Givenγi > 0, i = 1, 2 · · · , N , consider the inter-
connected system (2.1) satisfying Assumption 4.1. Then there ex-
ists a decentralizedH∞ filter of the form (2.2) such that the over-
all error dynamics (2.4) is totally asymptotically stable and the
L2-gain satisfies (2.5), if there exist some matricesTi = T T

i > 0,
Si = ST

i > 0, Aif , Bif , Cif andDif , i, j = 1, 2, · · · , N , satis-
fying the following set of LMIs

[
Ti I
I Si

]
> 0, (4.8)

Ji =

[
Ji11 Ji12

JT
i12 Ji22

]
< 0 (4.9)

where

Ji11 =

[
AiTi + TiA

T
i Ai +AT

if

AT
i +Aif AT

i Si + SiAi + CT
i BT

if + BifCi

]
,

Ji12 =

[
Bi TiL

T
i − CT

if TiH
T
i Ri

SiBi + BifDi LT
i − CT

i DT
if HT

i SiRi

]
,

Ji22 =




−γ2
i I (Ei −DifDi)

T 0 0
Ei −DifDi −I 0 0

0 0 −Qie 0
0 0 0 −Ri




andRi, Hi andQie are as in (3.2)–(3.5). If the above LMIs are
feasible, the decentralizedH∞ filter can be computed using (4.5)-
(4.7).

Proof: Premultiplying and postmultiplying matrix inequality
(3.6) by the block-diagonal matricesdiag{φT

i1, I, · · · , I} and
diag{φi1, I, · · · , I}, respectively, and considering the change
of controller variables (4.5)–(4.7), then (4.9) can be obtained. This
completes the proof of this theorem. 2

Remark 4.1 Note that given the symmetric positive matricesQij ,
i, j = 1, 2, · · · , N , (4.8) and (4.9) are linear inTi, Si,Aif ,Bif ,
Cif andDif . Therefore, the existing LMI tool [5] can be applied
to find a feasible solution if exists.

Remark 4.2 Given any feasible solutions to the LMIs (4.8) and
(4.9) in Theorem 4.1, a decentralizedH∞ filter and the positive
definite matrixPi can be constructed as follows
1. Compute invertible matricesMi andNi by using the singular
value decomposition ofMiN

T
i = I−TiSi (Mi andNi are square

invertible by (4.8)). Then define the matricesφi1 and φi2 as in
(4.3). Thus,Pi = φi2φ

−1
i1 .

2. Obtain the decentralizedH∞ filter parametersCif , Bif and
Aif by solving (4.5)–(4.7).

5. CONCLUSION

In this paper, we have provided an LMI approach to the decentral-
izedH∞ problem for interconnected linear systems. Our approach
has some advantages: the local filter is based only on its own lo-
cal available information and there is no any information exchange

among subsystems; The communication and computational loads
are reduced efficiently; The filtering error is totally asymptotically
stable and theL2 gain from the exogenous noise to the filtering er-
ror is less than a prespecified level; The LMI approach is computa-
tionally efficient owing to recent advances in convex optimization
[1, 5].
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