AN LMI-BASED DECENTRALIZED H., FILTERING FOR INTERCONNECTED LINEAR
SYSTEMS

Shoulie Xié, Lihua Xié and Susanto Rahardja

1 Signal Processing Program, Laboratories for Information Technology
Agency for Science, Technology and Research
21 Heng Mui Keng Terrace, Singapore 119613
Email: {slIxie, rsusantp@lit.a-star.edu.sg

1 BLK S2, School of Electrical & Electronic Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 639798
Email: elhxie@ntu.edu.sg

ABSTRACT stage (high-level). In [8, 13, 11, 14] and references therein, the
] ] o ) decentralized filtering approach has no central filter (processor),
This paper focuses on decentralized, filtering problem for in- i.e., the decentralized filter with an non-hierarchical structure, but

terconneqted Ii_near systems. The prol_:)lem_ we address is to find dmploys the principle of information exchange among the local
dec_entrall_zed fllte_r wherg each local filter is based only on I_ocal Kalman filters. That is, in the dynamical model of the each local
available information on its own subsystem and the overall filter- estimator, there is an interconnected term related to the estimated
ing error is totally asymptotically stable and thg-gain fromthe  states of other local estimators. This strategy yields in general a
exogenous noise input to the filtering error_less than a prespecifiedsiaple and globally suboptimal estimate for the overall system.
:g\é?lé;]h'sepsgﬁrezhgyzsts%t fﬂigﬁfﬂiﬂgiﬁﬁgﬁﬂ}ﬁyﬂ%ﬁf lt)ech- Note that t_he filtering metho_ds mentioned at?ovg do not yield
niques, which are numerically efficient due to recent advances infu”y (_jecentrallzed, and havg still large commu_nl_catlon and com-
convex’ optimization putational loads, and the estimate results are difficult to be applied
: to decentralized control of large-scale systems [10]. An fully de-
centralized filter is that the data of each sensor is processed locally
1. INTRODUCTION and there is no central processing filter and information exchange
among the local filters. It is well known that if standard filter-
A number of large-scale systems founded in the real world are ing theory is used to design local filter where the subsystem are
composed of a set of small interconnected subsystems, such ayyeated as if they were decoupled, then this passive filter design
power systems, digital communication networks, economic sys- Without any regard for the interaction terms may be overly con-
tems and urban traffic networks. The filtering for processing of servative and result in unsatisfactory performance of the system
data in large-scale interconnected dynamic systems often involveswhen the local filters are used in the composite system with inter-
the measurement and manipulation of a great numbers of variablesconnections. For example, it can easily be shown that the filtering
It is generally impossible to design a fully centralized filter where error for each subsystem will be governed by the unaccounted in-
all measurements from all the sensors are gathered in one vectoterconnection term and there will in general be no guarantee for
and are processed centrally, and it is also too costly and numeri-the convergence of the estimate. It is therefore necessary to ac-
cally unreliable even if they can be implemented. These difficulties count for the interaction term in designing the fully decentralized
motivate the development of decentralized filtering theory where filter. This paper belongs to this case.
each local filter is constructed independently on the basis of its On the other hand, the existing centralized and decentralized
own performance criterion and locally available information, thus filters are derived under the assumption that the noise sources are
processes its own data of each subsystem. Therefore the computawhite’ processes with known statistics. In many applications, this
tional requirements can be significantly reduced by the decentral-would be an excessive prior knowledge of the nature of noise. This
ized technique. motivated the study of filtering in af{., framework, which re-
During the past few years, the Kalman filtering method has flects the worst-case “gain” of the system. In thg, setting,
been extended to the decentralized filtering of large-scale systemsthe exogenous noise sources are assumed to be energy bounded
In [2, 6, 12] and references therein, A decentralized hierarchical rather than Gaussian. A filter is designed to guarantee a pre-
or two-stage Kalman filtering structure was proposed, that is, the scribedH ., performance for the filtering error for all admissible
local filters (processor) process their own data in parallel to yield noises. Although many results in centralized,, filtering have
the best possible local estimates in the first stage (low-level) andbeen obtained, see [9, 15, 16] and references therein, however,
their solutions are then sent and fused by the central or master filterto my best knowledge, th& ., filtering method is not applied to
(processor) to make a best possible global estimate in the secondiarge-scale systems yet. In this paper, we will design a fully de-
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centralizedH  filter which such that the overall filtering error is Remark 2.1 Inthe above problem statement, : = 1,2,---, N
totally asymptotically stable and th&,-gain from the exogenous can be regarded as the prespecified level of disturbance attenua-
noise input to the filtering error less than a prescribed level. In this tion for each individual subsystem. Whgn= vo,7 = 1,2, --- N,
paper, we also show that the decentralizéd filtering problem (2.5) becomes

can be solved in terms of linear matrix inequalities (LMI's). An llel|3 = 75 l|lwll3 + 6 (zeo) (2.6)

efficient algorithm exists for solving LMI's [5]. for all w; € L£2[0 oo). This case is called astandard decentral-

ized H filtering problem.
2. PROBLEM STATEMENT AND PRELIMINARIES
Remark 2.2 Note that the decentralized state estimation problem
Consider the following interconnected linear systems which con- js a special case of the above decentralizég filtering problem

sists of N subsystems: withL; =1, E; =0, C;y = I andD;y = 0.
N
. . o o Remark 2.3 The decentralized filter (2.2) is fully decentralized
2 = Airi+ Biwi + , Z ‘A”m’ form where the local filter is based only on the local available
I=1.5# information of its own subsystem, and there is not hierarchical
yi = Cizi + Diw; (2.1) structure and information exchange among other local filter.
Zi = Lll’l—FEZu}“ ’L':1,2,---,N
wherez; € R™ is the state of théth subsystemw; € R% is 3. ANALYSIS OF DECENTRALIZED Hoo FILTER

the exogenous noise input belonging4e[0 ,Ys € R™ s . i . . .
the mea?sured output of Ft)hm subsg/stgmez[- Goo%myis the signal The decentralize® -, filter analysis problem associated with the
to be estimatedA;, B;, C;, D;, L:, E; and A;; are known real interconnected system (2.1_) is as follows: Givegn> 0, 4 =
constant matrices with appropriate dimensions. Furthermore, thel> 2 o N, a_n_d adecentrallz_ed filier of the form (.2'2)’ we .W'” de-
Aj, represents the interaction effect betweenithsubsystem and termine conditions under which the error dynamics (2.4) is totally

the jth subsystem asymptotically stable and satisfies (2.5) for@alle L£2[0 o).
In this paper, we will consider decentralized filter of the form: ana;;giesfollowmg theorem give the main result of thé., filter
Tip = Aigzip + Bigyi 2.2) _ iy .
zif = Cigmis+ Disyi ) Theorem 3.1 The following conditions, all guaranteeing the so-

lution to the decentralize®{ filter analysis problem associated
with the interconnected system (2.1) and the filter (2.2), are equiv-
alent.

(i) There exist matrice®; = P; > 0 andQ.; = Qi; > 0,
1,7 =1,2,---, N, such that

wherez;; € R" andz;y € R" are the estimated state (filter
state) and the estimate of output signalrespectivelyA;¢, By,
Ciy and D,y are constant matrices with appropriate dimensions to
be designed latter.

Define the filtering error as

= T
€ = 2 — Zif- (2.3) _ = P,Bj. + LT E;. |
. . . o BIP+ ELLi. BB, —~21 | <0 @D
Then, the filtering error dynamic model is given by

N where
tie = AieTie + Biew; + Ajjz;
z v w j:%; PR (2.4) Ei=P Aw + Ai.Pi+ P,R; P + Hi.Q; . Hic + Li.Lic
ei = LieTie + Eiew; R 0
Where:zie — [QZ;T :rz}]T and R@: Z QZ]7 Rz = |: 0 0 :l ’ (32)
j:17j¢i
Aie = |: A’L \ :| ) Bie = |: Bl :| ’ Aij - |: A’L] :| ’ H’L = [A?z : A’L 1,3 Az?;-l,i e A%i]T7 (33)
BiyCi  Aiy By D; 0 Hi.=[H; O] (3.4)
Lie=[Li — DiyC; — Clyjl, Eie = E; — DiyD; Qic =diag{Qui, -, Qi—1,i, Qix1,i, -, QNi} (3.5)

In this paper, we deal with thdecentralizedH ., filtering

problem for the interconnected system (2.1). More precigahgn (i)There exist matrices” = P; > 0 andQi; = Qi; > 0,

1,7 =1,2,---, N, such that

scalarsy; > 0,7 =1,2,---, N, we are concerned with the design
of decentralized fllter (2 2) for each subsystem such thatthe overall , _
error dynamics (2.4) is totally asymptotically stable and ihe
gain from the exogenous noise input= [w{ --- w%]” to the PAi.+ATP, PB. LT HL P [ 1 } R;
filtering errore = [el --- e%]T lessthamy = [y1 -+ n]7 0
in the sense that Bz; -1 E. 0 0
N N N N Eoze BI 0 8
Z/O el e;dt < Z’y?/o wlwdt + d(zeo) (2.5) 0 0 %216 _Ri
= = <0 (3.6)
for all w; € L2[0 o), whered(zeo) with §(0) = 0 is a real-
valued function of the initial state.o = [¢7,(0) --- zX.(0)]7. whereR;, H;. andQ;. are given in (3.2)—(3.5).
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Proof: DefineV; = zZ Px;., the time derivative o¥; along
the state trajectory of the system (2.1) is

Vi :mz;(PiAie + Az;Pz‘)Iie + 2], P, Biew;
N
+2$3;PZ‘ Z Aij:Ej

J=15#i

(3.7)

Notice that for any vectors, y and any matrix@Q = Q7 > 0
of appropriate dimensions

207y <2"Qr+y"Q 7y

Hence, if£, < 0, then it follows from (3.12) that when; =
0, the error dynamics (2.4) is totally asymptotically stable.

Integrating the above inequality (3.12) oyérco), and noting
thatV;(z;.) > 0, we have

N N N N
Z/ el-Teidt < va/ wl-Twidt + 0(xe0) (3.13)
i=1 70 i=1 0

whered(zeo) = Zf.v:l Vi(z:(0)). Therefore, the decentralized
H o filter analysis problem associated with the interconnected sys-
tem (2.1) and the filter (2.2) is solved.

(i) Using Schur complements, we obtain that the inequalities

Hence, we have that for any some symmetric positive matrices (3.1) and (3.6) are equivalent. The proof of this theorem is com-

Qi; >0,i,7=1,2,---, N, the following inequalities hold

N N
2$Z;P7; Z Aijxj: Z Zl'z;Pi |: é :|A7;jxj

j=1,j7i J=1,5#i

N
<z P Z

j=1,j7i

N
+ Z ;] ALQu A

J=1,57

[ é :|QijPi[I Oz ie

=2 PR} Pizic + Aij (3.8)
whereR; is asin (3.2) and
N
Ay = Y 2l ALQG Ay
J=1,5#i
Also define
N
J=1,5#i
Then, we have that
N N
BEUED PPe ©9)
=1 i=1
and
N AT
Aji = Z azz; |: 67' :| Q;Zl [AJZ O]J}ie = xﬁHﬁQ;lHiexie

J=1,j#i
(3.10)
It follows from (3.7), (3.8) and (3.10) that

Vit e e — yiw] wi
<zl (P Ase + ALP + PR} P)xwic + 2z} Pi Biew; + Aj

T v+ T T +T T T 2 T
+migLigLiexi8 + QCCieLieEiEWi + w; EigEiewi — Vi Wi Wi

= [553; wiT]Cl |: f}le :| + Ay — Ajs (3.11)
Thus, in view of (3.9) and (3.11), we have
N N
SV b efen - ulw] < ST WT)es [ e ] (3.12)
=1 =1

pleted. |

4. SYNTHESIS OF DECENTRALIZED Ho FILTER

In this section, we will deal with the decentralizétl,, filter de-
sign problem defined in Section 2. To this end, we need the fol-
lowing assumption:

Assumption 4.1
(a) A; is asymptotically stable
(b) (A; C;)is detectable; = 1,2,---, N.

Note that in the matrix inequalities (3.1) and (3.6), the decen-
tralizedH . filter parameterst; ¢, B; ¢, C;¢ andD; ¢ are unknown
and occur in nonlinear fashion, therefore, (3.1) and (3.6) can not
be considered as an LMI problem. In the sequel, we shall use
a method of changing variables [3, 4] such that (3.6) is reduced
to two LMIs for given positive matrice®;;, 4,5 = 1,2,---, N.
Therefore, the decentralizéd.. filter parameters can be designed
based on LMI technique.

First, partitionP; and its inverse as

Si  N;

| T M,
P = [ MT U

Wheresi, TZ‘, M»;, N; € R XM
Note that the identity?;, P! = I gives

] (4.1)

M;N] =1-T,S; (4.2)
Define
¢i1:[]\§:¢ H ¢i2=[é jﬁT} (43)
Then the following identity holds
Pigi1 = ¢iz
It also follows that
b1 Piir = bi10i2 = { 7} él } (4.4)
Now, define the new controller variables as
Cip £ Cif M + DiyCiT; (4.5)
Bi¢ = N;B;y (4.6)
Aif 2 SiAT + N;BiyC.Ti + Ni A ME (4.7)
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Therefore, given positive definite matricgs S; and invert- among subsystems; The communication and computational loads

ible matricesD;¢, M; and N;, the controller matrices\;s, B;y are reduced efficiently; The filtering error is totally asymptotically
andC; can be uniquely determined b¥;¢, B;y andCi;. stable and th&, gain from the exogenous noise to the filtering er-
We are now in the position to state our main result on decen- ror is less than a prespecified level; The LMI approach is computa-
tralized’H filter design based on an LMI approach. tionally efficient owing to recent advances in convex optimization
[1, 5].

Theorem 4.1 Given~y; > 0,7 = 1,2---, N, consider the inter-
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