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ABSTRACT

We consider the reconstruction of MRI images by minimiz-
ing regularized cost-functions. To accelerate the computa-
tion of the estimate, two forms of half-quadratic regulariza-
tion, multiplicative and additive, are often used. In [13], we
have compared both theoretically and experimentally the ef-
ficiency of these two forms using one-dimensional signals.
The goal of this paper is to compare experimentally the effi-
ciency of these two forms using MRI image reconstruction.
We find that using the additive form is more computation-
ally effective than using the multiplicative form.

1. INTRODUCTION

We address image reconstruction where a sought image�� �
�� is estimated from degraded data� � ��� by minimizing a
cost function� � ��� � �� which combines a quadratic data-
fidelity term and a regularization term� via a parameter
� � �:

�� � �	

�����

����� where ���� � �������
�����	 (1)

We shall assume that the observation operator� � ����� is
known. We focus on regularization term� of the form

���� �

��
���


���� ��� (2)

where
 � �� � �� is a potential function and��� , for � �
�� 	 	 	 � 
, are linear operators. Typically,���� �� are first or
second-order differences between neighboring pixels. If�
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is the
 � � matrix whose�th row is ��� , for � � �� 	 	 	 � 
,
a basic requirement is�������� � �������� � ���. We
suppose that
 is smooth and convex, andedge-preserving,
i.e. 
��� � �� for 	�	 � 
. Such functions can be found in
[2, 3, 1, 5], e.g., Huber potential function:


��� �

�
���� if 	�	 � ��
�	�	 � ���� if 	�	 � �	

(3)

Cost-functions of this form are popular in various inverse
problems such as denoising, deblurring, seismic imaging,
tomography.

However, the resultant minimizers�� are non-linear with
respect to data� their computation is costly, especially when
� has many non-zero entries. In order to cope with nu-
merical slowness,half-quadratic (HQ) reformulation of�
has been pioneered, using two different ways, in [7] and
[8]. The idea is to construct anaugmented cost function
� � ��� � ��� � �� which involves an auxiliary variable
� � ���, and two new functions,� � ��� �� � ��, where
��	� ��� is quadratic
�����, and� � �����,

� ��� �� � ���� ��� 
 �

��
���

����� �� ��� 
 �

��
���

������

(4)
so that 
��� � �	


����
����� �� 
 ����� � 
� � ��	 (5)

By (5), the global minimizer���� ��� of � yields the solu-
tion initially defined in (1), since���� � �	
����� � ��� ��,

� � ���. In [7], Geman & Reynolds first considered a
quadratic term� of themultiplicative form,

���� �� � ���� for � � ��� � � ���	 (6)

Later, Geman & Yang [8] proposed anadditive form for �:

���� �� � ��� ���� for � � ��� � � ��	 (7)

In both cases (6) and (7), the dual function�, which ensures
(5), is obtained using the theory of convex conjugacy [9].
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The augmented cost-function� is minimized using an
alternating minimization scheme. Let the solution obtained
at iteration�� � �� read�������� �������. At the next itera-
tion � we calculate
���� such that � �������� ����� � � �������� ��� 
� � ����

���� such that � ������ ����� � � ��� ������ 
� � ���	
These minimizations give rise to twominimizer mappings,

� � �
����� ��� 	 	 	 � ���

�
� ��

��
with � � �� � ��, and� �

���� with � � ��� � ���. The alternate minimization thus
reads

�
���
� � ����� �

������� 
� � �� 	 	 	 � 
� (8)

���� � �������	 (9)
These ideas has been pursued and deepened by many

authors [3, 6, 1, 5, 11, 10]. Although the intuition that HQ
regularization does indeed increase the speed of the mini-
mization of regularized cost-functions of the form (1), this
critical question has never been considered in a theoreti-
cal way. In [13], the performance of both formulations (6)
and (7) has been compared using one-dimensional signals.
The goal of this paper is to compare experimentally the effi-
ciency of these two forms using MRI image reconstruction.
We find that using the additive form is more computation-
ally effective than using the multiplicative form.

2. SOME FACTS ABOUT HQ REGULARIZATION

2.1. Multiplicative form

We consider potential functions
 such that
�� 
�

�
�� is concave on���� �	�	�	 


������ �
�
�� 
��� is convex on��� �	�	�� 
������ � ��

 is twice differentiable on��� 
����
����� 
����	

(10)Then the expressions below are equivalent [7, 5, 10]:
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���� � ���	���
�

���� ���

�
	

(11)

Notice that� is convex and���� � 

 for � � �; hence
the infimum in (11) can be considered only for� � �. The
resultant augmented cost-function� is defined on�������

�

and reads

� ��� �� � �������
������ diag��� ��
�

��
���

������

(12)
where diag��� is a diagonal matrix whose diagonal elements
are��, for � � �� 	 	 	 � 
. The function�, as given in (8),
reads [5, 10]

���� �

�

����

� �
if � �� �

� if � � �
where � �� �	�


�	


����

� �
�

(13)
where clearly����� �, 
�� ��. The minimizer mapping�,
introduced in (9), satisfies��� ������ ����, 
�� ���, and
reads:

���� � ������
��

�� ��
where ���� � ���
 ��� diag����	

(14)

2.2. Additive form

This form is considered under the condition that the func-
tion

�� ����� 
��� (15)

is convex, continuous and finite for every� � ��. Then the
following expressions are equivalent:
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�
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 ��� �����
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�

���� ��� �����

�
	

(16)

The condition (15) implies that
 ����� � 
�����, for any
� � ��. Whenever
 is convex, it implies that
 is differen-
tiable. The augmented cost-function now reads

� ��� �� � �������
 �

�
���� ���
�

��
���

�����	 (17)

The minimizer function� reads [4, 1]:

���� � �� 
����	 (18)

The minimizer function� relevant to� �	� �� reads

���� � ���
�
��� � 
 ��� �

	
�

where � � ����
 � ���	
(19)

3. EXPERIMENTAL RESULTS
In this section, we first consider restoring a two-dimensional
image (�������) and use this example to compare the per-
formance of the additive and the multiplicative forms of the
HQ regularization. In Figures 1 and 2, we display the orig-
inal signal and the observed blurred and noisy version. We
consider a spatial-invariant blurring process, and therefore
the corresponding blurring matrix� is a Toeplitz-like ma-
trix [14]. Since� is Toeplitz-like and� is the discretization
matrix of the first-order differentiation operator, the coeffi-
cient matrix���
���� in the additive form can be diag-
onalized by the cosine transform matrix. It follows that the
computational complexity required for solving (19) at each
HQ iteration is���� ����� operations for an�-by-� image.
However, for the multiplicative form, the coefficient matrix
is ��� 
 ��� �	������ and it cannot be diagonalized by
the fast transform matrix even� and� have Toeplitz struc-
tures. We employ conjugate gradient methods (inner itera-
tions) to solve such linear systems. The computational com-
plexity required at each inner iterations is����� operations.

The restored images using a cost-function of the form
(1)-(2) where
 is a Huber function (3) are displayed in Fig-
ures 3 and 4 for the additive and the multiplicative forms
respectively (� � � � �). The stopping criterion of the HQ
iterations is		 ��� �  �����		��		�		� � � � ���
. All the
computations are done using MATLAB. Visually, two re-
stored images using the additive and the multiplicative form
are almost the same. In Table 1, we compare the perfor-
mance of the HQ iterations using the additive and the multi-
plicative forms for different parameters� and�. We see that

VI - 586

➡ ➡



Fig. 1. The original image.

Fig. 2. The blurred and noisy image. (relative error = 14.5)

the multiplicative form of the HQ regularization is more ef-
fective than the additive form in terms of the objective func-
tion values and the relative errors. However, the differences
are not significant.

On the other hand, the computational time required by
the additive form of the HQ regularization is significantly
less than that by the multiplicative form. As we have men-
tioned that fast cosine transform can be used to solve the
linear system in the additive form, but inner iterations are re-
quired to solve the linear system in the multiplicative form.
Thus the additive form is more efficient.

Next we consider the problem of increasing the spatial
resolution of three-dimensional fMRI images [12]. A slice
of a real image is given in Figures 5–8 using the additive and
the multiplicative forms of HQ regularization (� � �	�� and
� � �). Both forms restore the images quite well. Again the
fast cosine transform can be applied to solve the correspond-
ing linear system in the additive form. The inner iterations
are required in the multiplicative form. Our numerical re-
sults show that the additive form takes 103 seconds for the
restoration, but the multiplicative form takes almost an hour
for the restoration.

4. CONCLUDING REMARKS

We performed a numerical comparison of the two forms
of HQ regularization, multiplicative and additive. The ob-
tained results clearly stipulate that the additive form is more

Fig. 3. The restored image using the additive form. (relative
error = 0.1240)

Fig. 4. The restored image using the multiplicative form.
(relative error = 0.1239)

� � � and� � � additive multiplicative
Number of iterations required 4 4

Objective function value 259.3545 259.1436
Relative error of the restored image 0.12408 0.12399

CPU time required (seconds) 3.9 158.9
� � ��� and� � � additive multiplicative

Number of iterations required 4 4
Objective function value 258.1902 258.4929

Relative error of the restored image 0.12372 0.12226
CPU time required (seconds) 3.4 156.1

� � ���� and� � � additive multiplicative
Number of iterations required 5 4

Objective function value 235.1825 235.4126
Relative error of the restored image 0.12293 0.11727

CPU time required (seconds) 4.0 158.0
� � � and� � ��� additive multiplicative

Number of iterations required 4 4
Objective function value 159.3879 145.2088

Relative error of the restored image 0.13388 0.12751
CPU time required (seconds) 3.1 156.8

� � � and� � � additive multiplicative
Number of iterations required 4 4

Objective function value 437.9721 468.3296
Relative error of the restored image 0.12243 0.12215

CPU time required (seconds) 2.8 154.2

Table 1. Comparisons between the additive and the multi-
plicative forms for Huber potential function.
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Fig. 5. The original image.

Fig. 6. The blurred and noisy image. (relative error = 5.521)

attractive in terms of computational cost.
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