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ABSTRACT

We consider the reconstruction of MRI images by minimiz-

ing regularized cost-functions. To accelerate the computa-
tion of the estimate, two forms of half-quadratic regulariza-

tion, multiplicative and additive, are often used. In [13], we

have compared both theoretically and experimentally the ef-
ficiency of these two forms using one-dimensional signals
The goal of this paper is to compare experimentally the effi-
ciency of these two forms using MRI image reconstruction
We find that using the additive form is more computation-

ally effective than using the multiplicative form.

1. INTRODUCTION

We address image reconstruction where a sought ihage
RP is estimated from degraded dat& R? by minimizing a
cost function/ : R? — R which combines a quadratic data-
fidelity term and a regularization terd via a parameter
B >0:

& = min J(z), where J(z) =

2€R? | Az —yl|* +8®(z). (1)

We shall assume that the observation operdt@ R?*? is
known. We focus on regularization ternof the form

—ZME’ ), ©)

where¢ : R —» Risa potentlal function ang?, fori =
1,...,r, are linear operators. Typicalljg!z} are f|rst or
second-order differences between neighboring pixel& If
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is ther x p matrix whoseith row ISgT fori =1,...,r,
a basic requirement iger(A7 A) Nker(GTG) = {0} We
suppose thap is smooth and convex, aredige-preserving,
i.e. ¢(t) < t? for|t| — oo. Such functions can be found in
[2, 3,1, 5], e.g., Huber potential function:
2 :
o) = t%/2 if |t <a,

ot —a22 it [t >a O

" Cost-functions of this form are popular in various inverse

problems such as denoising, deblurring, seismic imaging,

" tomography.

However, the resultant minimizefsare non-linear with
respectto datatheir computation is costly, especially when
A has many non-zero entries. In order to cope with nu-
merical slownesshalf-quadratic (HQ) reformulation of.J
has been pioneered, using two different ways, in [7] and
[8]. The idea is to construct aaugmented cost function
J : RP x R"” — R which involves an auxiliary variable
s € R", and two new functions)) : R x R — R, where

Q(., s;) is quadrati¢vs; € R, andw R—R,
J(x,5) = ||A:c—y||2+BZQ 9i T, +/32w $i),
i=1 (4)
sothat ¢(t) = 21161121 {Q(t, s) +9¥(s)}, VteR. (5)

By (5), the global minimizexz, §) of 7 yields the solu-
tion initially defined in (1), since/(x) = minser- J(z, s),
Vz € RP. In [7], Geman & Reynolds first considered a
quadratic tern@ of the multiplicative form,

Q(t,s) =t’s, for te R, s€ Ry. (6)
Later, Geman & Yang [8] proposed additive formfor Q:
Q(t,s) = (t—s)?, forteR, seR. @

In both cases (6) and (7), the dual functioywhich ensures
(5), is obtained using the theory of convex conjugacy [9].
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The augmented cost-functigh is minimized using an
alternating minimization scheme. Let the solution obtained
at iteration(k — 1) read(z*~1 s(k=1)), At the next itera-
tion k£ we calculate
s™*) such that Tzt sk < 7z 5), Vs eR",
™ suchthat  J(z™®,s®) < 7(x,s%),  vzeRP
These minimizations give rise to twoinimizer mappings,

z = [o(g¥x),...,0(¢7x)]" witho : R — R, ands —
x(s) with x : R" — RP. The alternate minimization thus
reads

2.2. Additiveform

This form is considered under the condition that the func-
tion

t—12/2 — p(t) (15)
is convex, continuous and finite for everye R. Then the
following expressions are equivalent:

¢(t) = infer {(s) + (¢t —5)*/2},
U(s) = supeg{o(t) - (t—s)*/2}.

The condition (15) implies thap'(t~) > ¢'(¢), for any

(16)

(k)  _ T,.(k-1 P . N T
siv = olgle™Y), vi=1,..m, (8) t € R. Whenever is convex, it implies thap is differen-
™ = x(sW). 9) tiable. The augmented cost-function now reads
These ideas has been pursued and deepened by many

authors [3, 6, 1, 5, 11, 10]. Although the intuition that HQ

regularization does indeed increase the speed of the mini-

mization of regularized cost-functions of the form (1), this

critical question has never been considered in a theoreti-

cal way. In [13], the performance of both formulations (6)

T(e,) = A=yl + GlIGa—sIP+5 Y vl (7)

The minimizer functiorv reads [4, 1]:

and (7) has been compared using one-dimensional signalsThe minimizer functiory relevant ta7(., s) reads

The goal of this paper is to compare experimentally the effi-
ciency of these two forms using MRI image reconstruction.

We find that using the additive form is more computation-
ally effective than using the multiplicative form.

2. SOME FACTSABOUT HQ REGULARIZATION
2.1. Multiplicativeform

We consider potential functionssuch that

t — ¢(V/t) is concave oR 1, limy o ¢'(t)/t <oo,

t — ¢(t) is convex onR, lim; 00 ¢(2) /12 = 0,

¢ is twice differentiable oR, ¢(t)=¢(—t), Vt€R.
Then the expressions below are equivalent [7, 5, 1@?:0)

o(t) = infeer {st® +9(s)},
¥(s) = supeg {6(t) — s>} .
Notice thaty is convex and)(s) = +oo for s < 0; hence
the infimum in (11) can be considered only o> 0. The
resultant augmented cost-functighis defined orR” x R,
and reads ,
T(a,s) = | Av—y|]* + B(G)" diag(s) G +5 Y v(ss),

i=1

(11)

(12)
where diags) is a diagonal matrix whose diagonal elements
ares;, fori = 1,...,r. The functiono, as given in (8),
reads [5, 10]¢I( )

t . '
o(t) = 2¢ it ¢t#0 where ¢ := lim M,
C if t=0 ™O 27T

where clearly (t) >0, ¥Vt € R. The minimizer mappiﬁlg%)
introduced in (9), satisfieB, .7 (x(s),s) =0, Vs € R", and
reads:

x(s)
where H(s)

(H(s)™" ATy,

ATA L paTdiags)c. Y

a(t) =t — ¢'(t). (18)
x(s) = H'(24%y+ pGTs), 19
where H = 2ATA+8GTG. (19)

3. EXPERIMENTAL RESULTS

In this section, we first consider restoring a two-dimensional
image (28 x 128) and use this example to compare the per-
formance of the additive and the multiplicative forms of the
HQ regularization. In Figures 1 and 2, we display the orig-
inal signal and the observed blurred and noisy version. We
consider a spatial-invariant blurring process, and therefore
the corresponding blurring matrig is a Toeplitz-like ma-
trix [14]. SinceA is Toeplitz-like and7 is the discretization
matrix of the first-order differentiation operator, the coeffi-
cient matrixA” A+ A3GT G in the additive form can be diag-
onalized by the cosine transform matrix. It follows that the
computational complexity required for solving (19) at each
HQ iteration isO(n? log n) operations for an-by-n image.
However, for the multiplicative form, the coefficient matrix
is AT A + BG*diag(s)G and it cannot be diagonalized by
the fast transform matrix evet andG have Toeplitz struc-
tures. We employ conjugate gradient methods (inner itera-
tions) to solve such linear systems. The computational com-
plexity required at each inner iterationgi$n ) operations.
The restored images using a cost-function of the form
(1)-(2) wherep is a Huber function (3) are displayed in Fig-
ures 3 and 4 for the additive and the multiplicative forms
respectively ¢ = 5 = 1). The stopping criterion of the HQ
iterations is|| f®) — f*=D||3/]|g]]2 < 1 x 1072, All the
computations are done using MATLAB. Visually, two re-
stored images using the additive and the multiplicative form
are almost the same. In Table 1, we compare the perfor-
mance of the HQ iterations using the additive and the multi-
plicative forms for different parametetisands. We see that
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Fig. 1. The original image.

Fig. 2. The blurred and noisy image. (relative error = 14.5)

Fig. 3. The restored image using the additive form. (relative
error = 0.1240)

Fig. 4. The restored image using the multiplicative form.

the multiplicative form of the HQ regularization is more ef-
fective than the additive form in terms of the objective func-

(relative error =0.1239)

tion values and the relative errors. However, the differences

are not significant.

On the other hand, the computational time required by
the additive form of the HQ regularization is significantly
less than that by the multiplicative form. As we have men-

tioned that fast cosine transform can be used to solve the
linear system in the additive form, but inner iterations are re-
quired to solve the linear system in the multiplicative form.
Thus the additive form is more efficient.

Next we consider the problem of increasing the spatial

resolution of three-dimensional fMRI images [12]. A slice
of arealimage is given in Figures 5-8 using the additive and
the multiplicative forms of HQ regularization(= 0.01 and

£ = 1). Both forms restore the images quite well. Again the

fast cosine transform can be applied to solve the correspond-

ing linear system in the additive form. The inner iterations
are required in the multiplicative form. Our numerical re-
sults show that the additive form takes 103 seconds for the

restoration, but the multiplicative form takes almost an hour
for the restoration.

4. CONCLUDING REMARKS

a=landg =1 additive | multiplicative
Number of iterations required 4 4
Obijective function value 259.3545 259.1436
Relative error of the restored image 0.12408 0.12399
CPU time required (seconds) 3.9 158.9
a=05andg =1 additive | multiplicative
Number of iterations required 4 4
Obijective function value 258.1902 258.4929
Relative error of the restored image 0.12372 0.12226
CPU time required (seconds) 34 156.1
a=025andg =1 additive | multiplicative
Number of iterations required 5 4
Obijective function value 235.1825 235.4126
Relative error of the restored image 0.12293 0.11727
CPU time required (seconds) 4.0 158.0
a=1landg =0.5 additive | multiplicative
Number of iterations required 4 4
Obijective function value 159.3879 145.2088
Relative error of the restored image 0.13388 0.12751
CPU time required (seconds) 3.1 156.8
a=1landg =2 additive | multiplicative
Number of iterations required 4 4
Obijective function value 437.9721 468.3296
Relative error of the restored image 0.12243 0.12215
CPU time required (seconds) 2.8 154.2

We performed a numerical comparison of the two forms
of HQ regularization, multiplicative and additive. The ob-
tained results clearly stipulate that the additive form is more
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Table 1. Comparisons between the additive and the multi-
plicative forms for Huber potential function.




Fig. 6. The blurred and noisy image. (relative error = 5.521)

Fig.

Fig. 7. The restored image using the additive form. (relative
error = 0.04848)

8. The restored image using the multiplicative form.

(relative error = 0.04756)

attractive in terms of computational cost.
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