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ABSTRACT

There are very few techniques that can separate signals
from the convolutive mixture in the underdetermined case.
We have developed a method that uses overcomplete ex-
pansion of the signal created with a time-frequency trans-
form and that also uses the property of sparseness and a
Laplacian source density model to obtain the source signals
from the instantaneously mixed signals in the underderde-
termined case. This technique has been extended here to
separate signals (a) in the case of underdetermined convo-
lutive mixtures, and (b) in the general case of more than 2
mixtures. Here, we also propose a geometric constrained
based search approach to significantly reduce the computa-
tional time of our original ”dual update” algorithm. Sev-
eral examples are provided. The results of signal separation
from the convolutive mixtures indicate that an average sig-
nal to noise ratio improvement of 5.3 dB can be obtained.

1. INTRODUCTION

The method of blind source separation (BSS) attempts to
estimate the sources or inputs of a system by observing the
outputs of the system, without knowing how the sources
were mixed together. There are two cases of problems - the
instantaneous mixture (IM) where the system has no mem-
ory and the convolutive mixture where the length of the fil-
ters in the system is greater than one. The IM case can be
written in matrix form as

x[n] = as[n] (1)

where x[n] is the output, s[n] is the source and a is the mix-
ing matrix of size N by M , where N is the number of sen-
sors and M is the number of sources.

Recently, several authors have shown the feasibility of
BSS when N is less than M [1, 2, 3]. This can be achieved
by transforming the sensed signals to the time-frequency
domain and using the properity of sparseness to help in the
estimation of the mixing matrix. After the mixing matrix

has been estimated, the resulting estimate is used to esti-
mate the sources, where the sources are assumed to be in-
dependent and have a Laplacian density function. However
[3] uses what the authors call a ”dual update” approach that
iteratively and jointly estimates the source and the mixing
matrix by minimizing L1 and L2 norms. This approach is
extended to the convolutive mixture in this paper.

So far there has been little done to solve the convolu-
tive mixture separation especially, for the undermined case.
However, one author has developed a method to perform
underdetermined BSS when the system’s transfer functions
contain only delay elements that are attenuated by a fac-
tor [4]. Here, we attempt to fill that void. The next sec-
tion discusses how to perform BSS using an overcomplete
expansion. This is followed by challenges encountered in
the convolutive case and the proposed extensions to handle
those challenges. Finally, the results of several experiments
showing the effectiveness of this method is discussed.

2. PROBABILISTIC BASED BSS FOR
UNDERDETERMINED IM

This section summarizes our previous algorithm described
in [3] and generalizes it by proposing some modifications
(a) to handle more than 2 mixtures, (b) to robustly estimate
the initial mixing matrix and (c) to speed up the iterative
”dual update” algorithm.

In order to separate sources that have been combined in-
stantaneously, first, the sensed signals are transformed into a
time-frequency domain using the short-time Fourier Trans-
form (STFT), thus resulting in

X(k,m) = A(k,m)S(k, m) (2)

where X(k,m), (A)(k,m) and S(k,m) are the time-frequency
distributions of x[n], (a) and s[n], respectively. Since a rep-
resents an instantaneous system, A(k, m) = a and is con-
stant for all frequency bands, k and time m.

In order to find an initial estimate of a, the mutual in-
formation between sensors is computed for each subband.
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The subband with the highest mutual information is chosen
since it represents the subband that exhibits the most sepa-
ration and hence, can best estimate a. For the estimation of
initial a, the following equation is used

θi,j(k, m) = arctan(
Xj(k, m)
Xi(k,m)

) (3)

where k is the chosen subband and i and j represent the
signal received at the ith and jth sensors. If Sl(k, m) is
much larger than all the other sources at a particular k and
m, then (3) simplifies to

θi,j(k,m) ≈ arctan(
Aj,l(k)Sl(k,m)
Ai,l(k)Sl(k,m)

)

= arctan(
Aj,l(k)
Ai,l(k)

)
(4)

This results in clusters of measurements that correspond to
the arctangent of the ratios of rows aj and ai. Several meth-
ods could be used to find these clusters. Some authors use
a peak picking of the histogram [3]. Instead a hierarchical
cluster is computed in the proposed approach, where each
observation is taken in succession and merged with its near-
est neighbor. This is computationally less intensive than
finding the two observations that are closest together and
then merging them. The result is used as an initial guess for
a k-means clustering algorithm. The cluster means are then
used for the initial estimate of the mixing matrix. It was
found experimentally that this method works better than us-
ing either hierarchical clustering or k-means separately and
also is more robust than peak picking method.

The next step is to jointly minimize the cost function
(”dual update”). In this case the sources are modeled as a
Laplacian and the noise is assumed to be white Gaussian, so
the resulting cost function is

−L(S|X,A) = (X − AS)t(X − AS) + λct|S| (5)

where ct = [1 1 . . . 1], t denotes the Hermitian transpose
of a matrix and k and m are assumed in order to simplify
the expression. This expression is optimized by first finding
S(k,m) that minimizes λct|S(k,m)| under the constraint
that X(k,m) = A(k)S(k, m). The second part of the pro-
cedure re-estimates A(k) so that the sources will be more
independent.

The easiest way to perform the first part of the “dual-
update” method is to recognize that there is a local mini-
mum whenever there are M − N zeros in the S(k,m) vec-
tor. This can be shown by using a geometrical argument.
First draw the shape formed by all points at a certain cost, ε.
The resulting shape is an M-dimensional cube with vertices
located on the axes at a distance of ε away from the origin.
Now the constraint has dimension M − N , so when there
is one more source than sensor the constraint is a line. If

the line goes through the cube, then the portion inside the
cube is at a lower cost and the portion outside the cube is at
a higher cost. If the cube is shrunk until the constraint only
touches the edge of the cube, the point of intersection is the
lowest cost. If the line is parrellel to one of the sides of the
box, then there are an infinite number of solutions. This case
corresponds to the A(k) matrix having at least two identical
column vectors. The other case requires that the line inter-
sect a vertex of the cube. Of course this occurs when the
line passes through a plane created by all combinations of
N axes or in other words there are M−N zeros in S(k,m).
This gives a finite number of points to check. The point with
the lowest cost is the global minimum. Inclusion of this ge-
ometric constrained based search approach has speeded up
our original Armijo line constrained search of the ”dual up-
date” algorithm significantly. A similar method is used in
[1].

3. CHALLENGES FOR THE CONVOLUTIVE CASE

This section focuses on the problems to be addressed when
using the above mentioned method (”basic method”) to sep-
arate signals in the convolutive case where the mixing ma-
trix is not constant as in the case of IM but is a function of
time. The logical extension of the ”basic method” would be
to take the FFT of the signal with a length of FFT that is long
enough to ensure that the convolution can be approximated
as multiplication in the Fourier domain. Then the ”dual up-
date” algorithm can be applied in each subband indepen-
dently. This approach does have several drawbacks. First of
all, the algorithm finds the signal separation within an arbi-
trary scale factor and arbitrary permutation. This means that
the scale factors and permutations will need to be consistent
between different subbands. Incorrect scale factors cause
spectral distortion. This scale factor problem is solved here
by constraining the filter structure such that ‖Aj(k)‖2 = 1,
where Aj(k) is the jth column vector of A(k). This was
also used in [5]. The method that is used to find permutation
is based on the inter-frequency correlation[6]. This relies on
the fact that the adjacent subbands of non-stationary signals
are correlated. This can be used in the following equation

P̂(k) = arg max
P(k)

L∑

m=1

k−1∑

j=1

(P(k)S̄(k,m))tS̄(j, m) (6)

where P(k) is the permutation matrix and S̄(k,m) is the
envelope signal of S(k, m) which is created by passing the
absolute values of the source signals through a low pass fil-
ter. The permutation of the first subband is designated as the
correct permutation. The permutation of the next subband
is found by using (6). The source signals at that subband are
permuted according to the resulting P(k) and this is contin-
ued for all subbands.
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Lastly, the ”basic” algorithm assumes both sensed sig-
nals and the mixing matrix are real. However, they can be
complex. Threfore, the algorithm needs to be modified to
handle complex data. This is beneficial, not only for the
convolutive case, but the IM case where a is complex.

4. INITIAL SYSTEM (MIXING MATRIX)
ESTIMATE

In order for convolutive BSS to be possible, the method
finding the initial estimate must be changed to allow for
a complex mixing matrix. Assume that A(k) is complex.
The ratio in polar form of the ith and jth rows for the nth

column is

Aj,n

Ai,n
=

|Aj,n|
|Ai,n| e

√−1( � Aj,n−� Ai,n) (7)

Using an argument similar to (4) that Sl(k, m) is larger than
all the other sources results in

φi,j = � Xj(k, m) − � Xi(k,m)
= ( � Sl(k,m) + � Aj,l(k))
− (� Sl(k,m) + � Ai,l(k))

= � Aj,l(k) − � Ai,l(k)

(8)

This shows that the estimation of A(k) requires two com-
ponents - the ratios of the magnitudes of the A(k) elements
and the difference in phase between the elements.

The remaining procedure is similar to the IM case, in
that clustering is used to determine the initial estimate of
A(k). Since φ is between 0 and 2π and θ is between 0 and
π/2, φ is appropriately weighted in the clustering, so that
the same amount of weight will be placed on the φ compo-
nents as the θ components.

A value of φ that is slightly larger than 0 should be con-
sidered close to a value that is slightly less than 2π. If the
phase difference is close to zero or 2π then the clustering
algorithm could see two clusters. In order to avoid this pos-
sibility the histogram of φ is computed and the values are
shifted so that the discontinuity will occur at a point that
would not divide a cluster. An example scatter plot is shown
in figure 1. Unfortunately, due to the ambiguity of scale
factor, the actual phase values of the mixing matrix cannot
be determined. However the use of the phase difference, φ
greatly improves the robustness of the separation for convo-
lutive mixtures and complex IM.

5. EXPERIMENTAL RESULTS

In order to test this method, the experimental setup shown
in Figure 2 was used. This algorithm was tested for several
cases involving different numbers of sensors and sources.
This include two sensors tested with three and four sources,

Fig. 1. Scatter plot of data for BSS of 3 sources using 2
sensors. The circled x shows the true value computed from
the mixing matrix.
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Fig. 2. A block diagram of the complete BSS system

and three sensors tested with four and five sources. The
length of the filters used was five taps long and the filter
taps were randomly distributed between -0.5 and 0.5 using a
uniform distribution. The signals were mixed together with
additive white Guassian noise with a variance of 0.01. The
input signals had a variance of 1.0. The sources were short
speech clips, including a child saying the alphabet, a woman
counting in Spanish, a man counting in Ukrainian, and two
women speaking in English. Each experiment was repeated
10 times each with randomly determined filter taps. In each
experiment, the signals were reconstructed without using
any knowledge of how they were mixed together and for
comparison the signals were reconstructed using the known
values for a.

In order to evaluate the performance, a measure of the
average SNR improvement was used. First the SNR of each
source in each mixture was computed using the following
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equation.

SNRsi,xk
= 10 log10(

var(ak,j ∗ si)
var(xk − ak,j ∗ si)

) (9)

The average result is then subtracted from

SNRsi
= 10 log10(

var(si)
var(ŝi/c − si)

) (10)

where ŝi = c(si + ni) is the estimated source and c is a
constant due to the ambiguity of scale. Of course, c is un-
known and therefore it must be estimated. One method uses
the ratio of the cross-correlation of si with ŝi and the cor-
relation of si. If the noise and source are independent and
zero mean then the ratio is

Rsi,ŝi

Rsi,si

=
cRsi,si

Rsi,si

= c (11)

After c has been estimated, then the SNR of the estimated
sources can be compared with the SNR of the sensors to
show the average SNR improvement.

The tables show the resulting SNR improvement for 3
sensors and four sources and 3 sensors and five sources.
The average SNR improvement for four sources was 5.3 dB
and for five sources, it was 4.0 dB. When the knowledge of
mixing system a was used to estimate the sources, then the
improvement was 13.1 dB for four sources and 11.7 dB for
five (not shown in table 2 due to lack of space).

Full BSS BSS with known a
s1 s2 s3 s4 s1 s2 s3 s4

1.6 11.3 8.0 10.0 7.7 17.4 13.0 14.9
6.0 2.9 6.3 5.5 13.7 12.9 14.8 9.2
2.6 4.4 6.5 8.5 8.8 8.6 15.0 20.1
4.2 2.4 3.2 2.5 17.3 14.0 9.5 10.7
3.9 6.9 4.3 6.6 12.9 13.6 13.2 13.4
8.0 9.6 0.7 3.9 15.6 15.0 13.7 12.2
7.8 8.2 6.7 5.4 12.3 20.3 13.2 10.8
8.6 1.6 5.5 5.9 15.0 10.6 14.1 12.7
0.3 6.7 2.1 10.0 8.3 16.5 8.2 13.8
6.9 -1.7 5.0 3.9 16.6 7.7 13.9 11.7

Table 1. The SNR improvements over the average SNR in
dB of the sensor measurements for the case of three sensors
and four sources. 6. CONCLUSION

An extension of our probabilistic approach for the BSS of
underdetermined convolutive mixture is presented. This ex-
tension includes, capability to handle complex data and more
than 2 mixtures, and robust estimation of initial mixing ma-
trix and the number of sources. Further, the geometric con-
straint based search introduced in this paper speeded up our
previous ”dual update” algorithm significantly. The method
of inter-frequency correlation is also developed to find the

Full BSS
s1 s2 s3 s4 s5

0 3.6 -5.5 7.0 9.1
3.4 -0.7 4.5 1.4 11.3
5.8 3.8 6.0 4.1 5.4
4.2 0.6 7.3 -1.3 4.4
2.4 5.1 0.2 4.3 6.5
8.0 4.8 2.7 8.2 5.8
0.3 -0.6 -7.5 7.3 5.1
5.6 7.2 -1.1 2.2 10.3
3.3 4.2 2.4 6.5 8.2
8.1 8.1 -2.8 1.0 9.2

Table 2. The SNR improvements over the average SNR in
dB of the sensor measurements for the case of three sensors
and five sources.

correct permutations between frequencies. The experimen-
tal results indicate that this technique can efficiently sepa-
rate convolutively mixed signals. However, there still exists
resolving ambiguity of scale which is the topic of our fu-
ture research. The good estimation of coherent set of scale
factors will further improve performance of our method.
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