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ABSTRACT

In this paper, we present a stochastic deconvolution method for a
class of inverse problems that are naturally formulated as gromp
convolutions. Examples of such problems include Radon transform
inversion for tomography, radar and sonar imaging, as well as
channel estimation in communications. Key components of our
approach are group representation theory and the concept of group
stationarity. We formulate a minimum mean square solution to the
deconvolution  problem in  the presence of nonstationary
measurement  noise.  Our  approach incorporates a  priori
information about the noise and the unknown signal into the
inversion problem, which leads to a natural regularized solution.

1. INTRODUCTION

This work addresses a class of inverse problems that are naturally
formulated as group convolutions. '1'he concept of group convolution
arises naturally in an amazingly varied set of engineering scenarios.
These include ambiguity functions in radar and sonar, Radon
transform in tomographic image reconstruction, crror correcting
codes in communications, invariant template matching in pattern
recognition, workspace estimation in robotics and texture analysis
of solids in mechanics, just to name a few [1]-[10]. Group
convolution operation can be viewed as a representation of the
input-output rclationship of a lincar system, which has dynamics
invariant under the group composition law. As such, it is the
generalization of the classical convolution integral associated with
the linear time invariant systems, in which the underlying structure
is the additive group. Classical minimum mean square
deconvolution techniques rely on the assumption of stationarity
and time invariance, and utilize the Fourier transform to develop
inverse filtering methods. In this work, we develop a stochastic
inverse filtering technique based on the minimum mean square
error criteria to solve the convolution integral equation for a class
of locally compact groups of both commutative and
noncommutative type. This class of groups includes finite, compact
and algebraic Lic groups, separable locally compact commutative
groups, and majority of well-bchaved locally compact groups. Key
components of our study are Fourier transforms on groups, and
the concept of group stationarity.

The particular  focus of our work utilizes
noncommutative harmonic analysis over groups to solve
convolution integrals in a probabilistic sctting. 'I'o the best of our
knowledge, there are limited number of studies in the literature on
this specific topic. In [9] Naparst addressed the deconvolution over
the affine group in the context of wideband target density
estimation for sonar and radar applications. In [28] Chirikjian
developed a regularized solution for a specific convolution integral
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cquation over the Fuclidean motion group and demonstrated its
application into the kinematic design of binary manipulators [5].
Both of these works address a specific problem in a deterministic
setting, Our work addresses the deconvolution problem in a
probabilistic sctting for a broad range of topological groups that
arise naturally in engincering applications. Our minimum mean
square formulation also provides a natural regularization to the
inverse problem.

2. IMAGE RECONSTRUCTION PROBLEMS

In this scction, we formulate radar and sonar inverse scattering
problem and Radon transform inversion as deconvolution
problems over groups. Apart from the inverse problems in imaging
described here, group deconvolutions appear in variety of other
engincering applications. For example, the echo model described in
cquation (2.3a) can be utilized to model wide band wircless
communication channels, in which the reflectivity density function
is interpreted as the unknown communication channel. In [5] and
[24], it was shown that the deconvolution problem over the
Euclidean motion group arises in kinematic design of binary robot
manipulators and statistics of macromolecules. The results that are
developed in our study are directly applicable to these problems.

2.1 Radar and Sonar Image Reconstruction by Wideband and
Narrowband Processing

In radar and sonar imaging, the transmitter cmits an
clectromagnetic signal. The signal is reflected off a target and
detected by the transmitter/receiver as the echo signal. Assuming
negligible acceleration of the reflector, the wideband model of the
ccho from a point reflector is given as the time delayed and time-
scaled replica of the transmitted pulse [13]-[15]:

()= s f(st+1), @.1)

where f is the transmitted pulse, T is the time delay, and s is the
time scale or Doppler stretch. The term \/; is needed if we
require, the energy of the echo signal is to be conserved. It is given
as § = (5 - U)/ (: + U) where ¢ is the speed of the transmitted
signal propagating in a homogenous medium and U is the radial
velocity of the reflector. The narrowband model of the echo from a
point reflector is given by

e(r)=fr-1)e™ 22

where [ is the transmitted pulse, T is the time delay, and W is
the frequency or Doppler shift.
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It is often desirable to image a dense group of reflectors,
which may be several objects or a single object distributed in size.
This dense group of reflectors is then described by a reflectivity
density function. 'I'he received signal is modeled as a weighted average

[7]-[9]. For wideband signals, it is given as

o ()= [ [ S0 (;,r)% fﬁ;—Tﬁ—i;dT, (2.3a)

where S, (J,T) is the wideband reflectivity density function
associated with each time delayed and time scaled version of the
transmitted signal. The narrowband model is given by

ex(2) = } }sN (1) f (2 1)/ dTdw, (2.3b)

=00 =00

where ((A),T) is the narrowband reflectivity density function
associated with cach time delayed and frequency shifted version of
the transmitted signal.

The goal in radar and sonar imaging is to estimate .S, (J,T)
and S ((A), T) given the transmitted and the received signals.
"I'ypically, the received echo in a radar or sonar system is very weak
due to clutter and system noise. Therefore, the detection at the
receiver side is performed by matched filtering, which amounts to
correlating the received echo with the transmitted pulse. When the
two echo models described in (2.3a) and (2.3b) are inserted into the
narrowband and wideband correlation receivers, the resulting
outputs are expressed as group convolution integrals. In the case of
wideband processing, it is the gffine group convolution, and in the
case of mnarrowband processing, it is the Heisenberg group
convolution. We will demonstrate that the deconvolution
techniques described here provides a minimum mean square
estimate of the wideband and narrowband reflectivity density

functions.

2.2. Radon transform inversion for tomographic imaging

The Radon transform and its generalizations play an important role
in the tomographic image reconstruction problems in fields as
diverse as medical imaging, radar target shape estimation, and radio
astronomy. This problem is equivalent to computing the inverse
Radon transform. Here, we show that Radon transform inversion
can be posed as a deconvolution problem over the Euclidean
motion groups.

In X-ray computed tomography, an X-ray beam with known
cnergy is sent trough the object and the attenuated X-ray is
collected by an array of collimated detectors. The attenuation in the
final X-ray beam provides a means of determining the integral of
the mass density of the object along the path of the X-ray. In 2D,
the relationship between the mass density along the path and the
attenuation at angle 0, and radius r, is given by the following
Radon transform:

p(r,e) = I I f(x,])é(r —xcose—]sine)dx@/ s (2.4)

where 0 is the 7D7irac delta function. Similarly, in PE'T', SPECT and
synthetic aperture radar (SAR), the line projections and the

attenuation coefficients are related by the Radon transform.

"T'he Fuclidean motion group is the semi direct product of the
rotation group SO (N ) and the additive group in R™ . Redefining,
]’(R,r) =f (r)é(R) , where R is the two dimensional rotation
matrix, r = [x,]]T ,and k(Q,T) = 5(e E‘t) , and e is the vector in x
direction, it can be shown that the Radon transforms and its
generalizations can be written as an Fuclidean group convolution in
the following form:

pR)= [ Heor ) (1)

SEE(2)

= [ #(r".r-rQ™M)](2.1)d(2.1), g=(R.r) 25)

SE(2)

2h0SE(2),

where SE(Z) denotes the two dimensional Fuclidean motion
group, © denotes the group composition law and, 4 (Q,T)
denotes the invariant measure on the Fuclidean motion group. Our
approach provides a minimum mean square solution to this

problem in the presence of nonstationary measurement noise.

3. THE CONCEPT OF CONVOLUTION AND
FOURIER ANALYSIS ON GROUPS

We shall indicate a group by G and its clements by g,4,.... The
group composition law will be written by go 4, and we shall use €
for the identity clement, for which ¢o g = goe = g for all clements
g of G. We shall indicate inverse clements by g so that
glog=gog ' =¢ forall clements g of G.

Tet I7 (G, dg) denote the Hilbert space of all complex
valued, square integrable functions on a group G, and let x and
f be two finite energy signals, then the convolution of x and f
are defined as [19]:

(x07) () = [ax(p) £ (57 o )b (3.1)

For a square integrable function on arbitrary Lic group,
f (/171 0 g) is called a translation in the same sense that f (l - T) is
a translation of a function defined on the real line. Note that in
general, the left and right translations are not equal.

From the perspective of group representation theory, Fourier
analysis deals with characterization of unitary representations as a
direct sum (integral) of irreducible unitary group representations.
T'his characterization is then utilized to define the Fourier
transformation, which has the property of mapping convolution
integral to a multiplication in the transform domain. However, for
an arbitrary group, such a characterization is far from unique.
Nonctheless, considerably satisfactory results can be obtained if
some restrictions are imposed on the group structure. It was shown
that if the group G is a separable, locally compact group of Type I,
[20] unique characterizations of the unitary representations can be
obtained in terms of the irreducible unitary representations of the
group. Fortunately, most of the noncommutative groups of interest
in engincering applications, such as the Fuclidean motion groups,
affine group, Heisenberg group fall into this category and admit
unique Fourier decomposition of functions.

et U(g,A) be the A th irreducible unitary representation of
a scparable locally compact group of I'ype-1.  Then, the operator
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valued Fourier transform on G maps cach f in ’ (G,dg) to the
family {7 (M)}
defined by

of bounded operators, where cach j‘ ()\) is

F()A)=F() _[f (g (g ) g . (3.2)

The collection of all A values is denoted by G and is called the
dual of the group G. The collection of Fourier transforms
{ j‘ ()\ )} forall AOG is called the spectrum of the function f .

An important property of the operator valued Iourier
transform, reminiscent of the classical Fourier transform over the
reals, is that the group convolution becomes operator
multiplication on the Fourier side, more preciscly,

F(ROL)A)=F(L)A)F(£)A). (3.3)

For locally compact commutative groups, all irreducible
representations of the group are one-dimensional. Hence, the
Fourier spectrum is scalar valued and appears similar to the classical

Fourier transform. The inversion formula, in this case, is given by

8)=[7 (U (gN)ar. (34)
G
4. GROUP STATIONARY PROCESSES

These processes are nonstationary in the classical sense but exhibit
invariance under the right or left regular transformations of the
group. The author demonstrated in her carlier work that the special
cases of group stationary processes for the multiplicative and affine
group form suitable mathematical frameworks for modeling and
analysis of sclf-similar and multiscale processes [14]-[18].

Second order group stationarity is a weaker condition in
which, only the second order statistics of the random process is
required to be invariant under the right or left regular

transformations of the group. Looscly speaking, second order

group stationary processes obey the following structure [21]-[23]:
ERX ()X (1) R(g247). 406G @)

where R is a positive definite function defined on the group

The central fact in the analysis of group stationary processes is
the existence of spectral decomposition, which is facilitated by the
Fourier theory on groups. For compact groups, left group
stationary processes admit the f()ll()wing spectral decomposition:

Z Irace ( ()\ )) (4.22)
z trace (

ATG
where R([ﬂ is the autocorrelation function of the process,

U( g,)\) is the A th irreducible unitary representation of the group
G with dimension 4 ()\) , Z ()\) is 2 random matrix of dimension
d ()\) and F ()\) is a bounded Hermitian positive definite operator
over G . Let

S()=F(R)N) = [aR () (eA). 43b)

zmd

F()\)) with }g trace (F ()\)) <o (4.2b)

We shall refer to S as the spectral density function of a group
stationary process. T'his is a natural generalization of the spectral
density function defined for ordinary stationary processes.

5. WIENER FILTERING OVER GROUPS

In this section, we shall introduce a novel stochastic deconvolution
method over groups based on the Fourier theory of topological
groups. We shall pose the deconvolution problem within the
framework of minimum mean square error prediction, and develop
a Wiener filtering method to estimate unknown signals from noisy
measurements. While our results will be stated for the locally
compact groups of I'ype I, special cases of finite, compact, and
commutative groups can be casily deduced from the main result.
Let the forward model that relates the measurements y and
the unknown function x are given by the following convolution

intcgral:

J‘x(b (57 0 8)db+n(g). G.1)

where f:G - C is a known complex valued, square summable
function, # is an additive noise indexed by the group G, taking
values in the ficld of complex numbers C. Without loss of
generality, we assume that EFc(g)H=ER(g)B=0. Then the
classical lincar Wiener problem of recovering x from noisy
measurements  y can be posed as follows: Find the lincar filter
W :GXG - C such that the least squares error variance

IE . ( o) Hie (5.22)
is minimized wh(.rc
= [W (g.5)y

d
and dh is the left Haar measure on the group G. Note that it is
implicit by the equation (5.2a) that the filter 7 is required to be

(h)dh == (g) . (5.2b)

doubly square summable. Then, the solution to the above lincar
least squares problem is provided by the following Wiener-Hopf
type equation:
W (2:5)R,, (5.6)s =R, (5.4, (5.3)
d I
where R | (J‘,/?) =E %}/(J‘) ( )E and R, =E %{ ](/7

Alternatively,

(7CR.)(2) IR (27 (pog)dp . (5.4a)

where

R (g)=R..(.) = ER(g)x(9)F
R (2)=R,(g.0)=EH(g)r()F:
W(g,e):W(g ,e)and f(g):f(g_l). (5.4¢)

The following theorem states an explicit solution for the Wiener-

(5.4b)

Hopt cquation, which in turn leads to the lincar least squares
recovery of the signal x .

Theorem : Let G be a separable locally compact group of Type-I,
and x(g) and n(g) , & of G, be two zero mean left group

stationary processes, referred to as signal and noise, respectively.

VI -579




Assume that the measurements obey the following convolution

integral and noise model:

()= [x(8)r (47 o )b +n(s) (5.54)

Ef(g)n()F=0. (5.5b)
where the filter f belongs to L7 (G,dg). Then, the optimum
minimizing (5.2a) is

and

lincar least squares deconvolution filter W,

left group invariant and the estimate of the signal is given as a

convolution integral

2(g)= [o(0)W,, (h7 o g)an. (5.50)

‘The Fourier transform of the optimal filter W, is given as follows:

7, ()=5. (07 WF )5, 07 )+ 5. 0 630
where AOG . Here, j’ is the Fourier transform of the convolution
filter £, and, f " denotes the adjoint of the operator j’ S, and
S, are operator valued spectral density functions of the signal and
noise, respectively. The spectral density function of the least square
error between the signal and its filtered estimate is given as

5. =(1-7,, ()7 ()5 () (5:59
where I denotes the identity operator.
Proof : Sec [25].
In [15], the author demonstrated the utility of proposed
deconvolution method in designing a Wiener filter for sclf-similar
processes in which the underlying group is the multiplicative group.
Detailed numerical studies showed that proposed method is
effective in signal recovery embedded in self-similar noise.

6. CONCLUSIONS

In this paper, we have shown how group representation theory can
be utilized to solve a class of inverse problems formulated as group
convolutions. Classical deconvolution problem in the lincar time
invariant systems and signals framework is a special case of the
general deconvolution problem, in which the underlying structure
is the additive group. We broaden the classical framework to
include wide range of groups of both commutative and
noncommutative type. These include finite, compact, and a large
class of well-behaved locally compact groups that arise naturally in
engincering applications. We developed a minimum mean square
solution for the deconvolution problem wusing the group
representation theory and the concept of group stationarity. The
mcthodology described here can be implemented cfficiently using
the fast Fourier algorithms available for a varicty of groups [26]-
[27]. The rescarch in this direction is on going and will be reported
in the future.

8. REFERENCES

[11 K. Kanatani, Group Theoretical Methods in Tmage Understanding,
Springer Verlag, 1990.

[2] R. Lenz, Group Theoretical Methods in Image Processing, Lecture
Notes In Computer Science, Springer Verlag, 1990.

[3] M. Ferraro, “Invariant Pattern Representations and Lie Group
Theory”, vol. 84 of Advances in Electronics and Electron Physics, pp
131-196, Academic Press, 1992.

[4]  R.J. Popplestone, “Group theory in robotics,” in Robotics research:
The First Int. Symp., Brady, M. and Paul, R. Eds., MIT Press,
Cambridge, MA, 1984.

[5] G.S. Chirikjian and . Ebert-Uphoff, “Numerical convolution on the
Euclidean group with applications to workspace generation,” TEEE
Trans. Robotic. Automat., vol. 14, pp 123-136, February 1998.

[6] I Ebert-Uphoff and G.S. Chirikjian, “Inverse kinematics of discretely
actuated hyper redundant manupulators using workspace density,
Proc. of IEEE Int. Conf. Robotics and Aut, pp 139-145,
Minneapolis, 1996.

[7]  R.E. Balahut, Algebraic Methods for Signal Processing and
Communications Coding. Springer-Verlag, 1991.

[8]  W. Miller, “Topics in Harmonic Analysis with Applications to Radar
and Sonar,” in Radar and Sonar, pg 66-168, Edited by R. E. Blahut,
W. Miller, C. H. Wilox, Springer-Verlag, 1991.

[9] I Naparst,” Dense target signal processing,” IEEE Transactions on
Information Theory, Vol. 37 Issue: 2, March 1991 pp. 317 =327

[10] S. Helgason, The Radon Transform, Progress in Mathematics, Vol. 5,
Birkhauser, 1980.

[11] C.E. Cook and M. Bernfeld, Radar Signals, Academic Press, New
York 1967.

[12] D. A. Swick, A Review of Wideband Ambiguity Functions, NRL Report
6994, Naval Research Laboratory, Washington 1D.C., December 1969.

[13] T1.G. Weiss, “Wavelets and Wideband Correlation Processing,” IEEE
Signal Processing Magazine, pp. 13-32, 1994.

[14] B. Yazici, and R. I.. Kashyap, “Second Order Stationary, Self-Similar
Models for 1/f Processes,” IEEE Transactions on Signal Processing. pp.
396-410. February 1997.

[15] B. Yazici, M. Tzzetoglu, B. Onaral, N. Bilgutay, "Optimal Wiener
Filtering for Self-Similar Processes" Proc of ICASSP'02, pp. 1697
1700, 2002.

[16] B. Yazici, “Group Invariant Methods in Signal Processing,” Proceedings
of Conference on Information Sciences and Systems, pp. 185-189. Johns
Hopkins University, Baltimore, MD. March 1997.

[17] B. Yazici and R. L. Kashyap, “Signal Modeling and Parameter
Estimation using Scale Stationary Processes,” Proceedings of 1996

International Conference on Aconstics, Speech, and Signal Processing. Vol 5,
Pp- 2841-2844, Atlanta GE. May, 1996.

[18] B. Yazici and R. L. Kashyap, “Affine Stationary Processes with
Applications to Fractional Brownian Motion,” Proceedings of 1997 Int.
Conf. on Acoustics, Speech, and Signal Processing. Vol 5, pp. 3669-3672,
Munich, Germany. April 1997.

[19] A. Robert, Introduction to the representation theory of compact and locally

compact groups, Cambridge University Press, 1983.

M.A. Naimark, Norzed Rings, Groningen, P.Noordhoff N.V., 1959.

AM. Yaglom, “Second order homogeneous random fields,” Fourth

Berkley Symposinm on Math jcal Statistics and Probability, 2, University

of California Press, Berkeley, pp. 593-622, 1961.

[22] E.J. Hannan, Group Representations and Applied Probability, Methuen’s
review series in applied probability, vol. 3, 1965.

[23] P. Diaconis, Group Representations in Probability and Statistics, Institute of
mathematical Statistics Monograph Series, S.S. Gupta, Vol 11, 1988.

[24] Chirikjian, G.S., Conformational Statistics of Macromolecules Using

N
==

Generalized Convolution, Computational and Theoretical Polymer Science,
pp143-153, Vol. 11, February 2001.

[25] B. Yazici, “Stochastic Deconvolution Over Groups,” submitted to
IEEE Transactions in Information Theory, April 2002.

[26] J.R. Driscoll, and D. Healy, and D.N. Rockmore, “Fast discrete
polynomial transform with applications to data analysis for distance
transitive graphs,” SLAM J. Computing, 26, 1066-1099, 1997.

[27] D.N. Rockmore “Efficient Computation of Fourier Inversion for
Finite Groups,” J. of the Association for Comput. Mach., 41(1), 31-66,
1994.

[28] G. S. Chirikjian, “Fredholm Integral Equations on the Fuclidean
Motion Group”, Inverse Problems, pp579599, Vol. 12, 1996

VI - 580




