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ABSTRACT

This paper considers the signal reconstruction problem un-
der unknown parameters and nature missing data. The so-
lution is divided into two stages. At first stage, the param-
eter estimation of autoregressive moving average(ARMA)
model with nature missing data is studied. In the second
stage, a robust Kalman filter to reconstruct the input sig-
nal is developed. The missing data model is based on a
probabilistic structure with unknown. In this situation, the
estimation becomes a highly nonlinear optimization prob-
lem with many local minima. In this paper, we combines
the global search method of genetic algorithm and simu-
late annealing(GA/SA) to achieve aglobal optimal solution
with fast convergent rate. After the system parameters are
exactly estimated in the first stage, the problem of recon-
structing the missing signal can be handled elegantly using
the proposed robust Kalman filter in the second stage.

1. INTRODUCTION

Many different parameter estimation and reconstruction meth-
ods have been proposed in recent years. In most cases,
however, it is assumed that the measurements always con-
tain the signal. In fact, in practical situations, there may
be a non-zero probability that any observation consists of
noise alone, i.e., the measurements are not consecutive but
contain missing observations. The missing observationsare
caused by a variety of reasons, e.g. acertain failure in the
measurement, intermittent sensor, failures, accidental loss
of some collected data, or some of the data may be jammed
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or coming from a high noise environment, etc [1]. In prac-
tice cases, it may happen that the data samples are missed
inthe measured signals. Fundamentally, the standard defini-
tion of the covariancein statistical analysis of data does not
directly apply if some of the measurements are unavailable.
If not properly taken into account, the missing measure-
ments can seriously deteriorate the quality of the estimates.
This paper considers the problem that the missing observa-
tion is random with unknown missing points and corrupted
noise. In this situation, the signal reconstruction problemis
very complicated, and difficult to solve by the conventional
methods. At the first step, parameter estimation algorithm
based on genetic algorithm/simulate annealing (GA/SA) is
proposed to resolvethe parameter estimation problem under
missing data and then a robust Kalman filter is proposed to
reconstruct the input signal.

Comparing GA [2] and SA [3], we can find that GA
exhibits fast initial convergence, but its performance deteri-
orates as it approachesthe desired global extreme. Interest-
ingly, SA shows a complementary convergence pattern, in
addition to high accuracy. We combine the selected features
from GA and SA to achieve weak dependence on initial
parameters, parallel search strategy, fast convergence and
high accuracy. The GA/SA dtarts the search procedure as
apure-GA and ends as a pure-SA. The transition from GA
to SA occurs when the fittest individual remains the same
for Lg generations. Hence, GA/SA is very suitable to treat
the global optimization problem of the nonlinear parameter
estimation under the corrupted noises and missing.

After the parameter estimation is solved under missing
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Figure 1. Signa model.

data a robust Kalman filter is proposed to treat this signal
reconstruction problem. When the signal is missing, the
Kaman filter's innovation signal is distorted. A nonlinear
robust function is embedded in Kalman filter to reconstruct
the innovation signal. From the simulation results, we have
found that the reconstruction performance is improved sig-
nificantly if the probability of data missing is considered in
the proposed parameter method and the signal reconstruc-
tion method.

2. PROBLEM DESCRIPTION

Let {y(k)} denotethe observed output signal (seethe Fig.1).
The measurement equation is given by

y(k) = zm(k)+n(k) = f(k)z(k) +n(k)
= f(k) _Zaix(k—z’)+2biu(k—i)
+n(k) @

where {u(k)} is azero mean unit-variance white Gaus-
sian noise, the noise n(k) is zero mean Gaussian processes
with the variance o2, and f(k) is binary random variable
such that

! if (k) is measured
Fk) = { 0 if 2(k) is missing

The following assumptions are made:

(A1) Theu(k), n(k), are mutually independent.

(A2) The sequence f(k) is assumed to be asymptoti-
cally stationary and independent of (k). Furthermore, they
are mutually independent. The probability p for the mea-
surement z s (k) to be measured is assumed to be unknown
and given by

@

where E denotes the expectation operator, and p is a
fixed probability, independent of time. Thus the probability
of missing measurement is (1 — p).

(A3) Each measurement has the fixed probability of be-
ing missed, and for different instants, the occurrences of
missing data are mutually independent. Thus, by the as-
sumptions, the power spectral density (PSD) of the received
datais

Sy(f) = Z Ty(l)zil|z:eﬂ"f
I=—00
= p? i o (|1))e™ 7> + K (%)

l=—00

wherer, (1) = E[z(k)z(k —1)], K = 02 +p.(r,(0) —
p.7,(0)). In this estimation problem, not only the system
parametersas, - - -, an, bo, - - -, b, are unknown but also the
probability p and the noise’s variance o2 are also needed to
be estimated.

Inspectionthe equation(4), theseriesas >_;= e 727/!
as a power series has the property of completeness, we can
obtain

[ PPr(0)+ K fori=0
ry (1) = { p? (1) forl #0 ©)

From the received data sequence {y(k)}, let us define
the sample covariance by

N
A= g 3 k-1 ©
k=l+1

where N is number of received data length. Note that

the sample covariances {7, ()} are unbiased estimates of

the true covariances {r,(l)}. The main idea is to search

for the polynomials °;° _ r,(I)2~" such that the corre-

sponding sequence {7, (0), - - -, 7, (M)}, from (4) and (6),

areasonable criterion is to minimize the mean sguare error
as

7bqap7 0'721) (7)

M
= min {Z(Ty(l) - ?y(l))g}

1=0

min J(ay, -+, an,bo,- -

M

min {(Ty(o) =7y (0)*+ ) _(ry (1) - ?y(l))Q}

=1
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3. FIRST STAGE: GA/SA-BASED PARAMETER
ESTIMATION

The combined GA/SA parameter estimation algorithm al-
ways stars the search procedure as a pure-GA and ends as
apure-SA. The transition from GA to SA occurs when the
following conditions is satisfied. The fittest individua re-
mains the same for L, generations. The condition is sat-
isfied whenever the algorithm converges to an intermediate
solution. The solution so far constitutes a good initial guess
to SA. The SA’s initial and final temperature, as well the
step length can adjust as afunction of thefittest individua’s
energy.

Based on the above analysis, the design procedure of
GA/SA-based parameter estimation of time serieswith noises
and missing data is divided into the following steps.

Step 0: Giventhereceived datay (k). Compute
the{{«y (0), -7y (M)} fromy (k).

Step 1: Generate random I chromosomes.
Step 2: Findr, (1), -,y (M).

Step 3: Compute the minimum mean square er-
ror

{Zf‘io(ry(l)— }y (l))2} by the genetic algo-
rithm

Step 4: Compute the corresponding fitnessvalue

Step 5: Remain the best chromosome intact
into next generation.

Step 6:Usethe GA operators (reproduction, crossover,
mutation) to produce chromosomes of next gen-
eration.

Step 7:Repeat the produce from step 2 to step 7
until the fittest individual remains the same for
L, generations.

Step 8: Given the best chromosome, Cy, Cj,
Cy, k, T, B and 62 of SA initial values.

Step 9: Generate the new-state

(a1,---,an,bo,---,bq,paﬂi) =
(ala Ty O, b07 Ty bqapa U%)-}-NOT”ITL(O, 6;)
and Compute the new-state energy

7 = {0, 07

Step10: Letp,(J') = 1/(1+exp(—J /BT));
if ps(J') >random [0,1) or new-state energy
(J')< original-tate energy (.J) then the current-
state = new-state.

Step 11: if thetemperature 7" isthe samein

k iterations, then decrease the temperature as
T = C,T.

Then, repest the procedure from step 9 to step 11 until a
suitable parameter set is obtained.

4. SECOND STAGE:ROBUST KALMAN
FILTER-BASED SIGNAL RECONSTRUCTION

From the state space form the equation (1) can as

s
=
+
=

Il

Fw(k) + qu(k +1)
hw(k)+n(k) (8

Since the signal is embedded in the state vector w(k),
therethe signal reconstruction problem becomes a state esti-
mation problem. Fromthe state equation (8), the state w can
be optimally estimate in the minimum mean-square-error
sense by using the robust Kalman filter. Thus, the optimal
State estimate w based on the received measurement time
seriesy (k) can be obtained by the following robust Kalman
filter

wk | k) =wk]|k-1)+Gk)e (k)
erlh) = (k- Da(—E)

y(k-1)
wk | k-1)=Fw(k-1|k-1)
G(k) = P(k|k-1)h'[o2 +hP(k|k—1)h' B
Pk | k) =I-GEhPE|k—1) 9)
Pk | k—1)=FP(k—-1|k—-1F" +qq’

wheree(k) = y(k) — y(k) = y(k) —h w (k[ k - 1),
and the nonlinearity ® isgiven as
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—Lexp(- &) i k<
(k) =4 1, if k<l (10)
Pexp(—l),if k>

o2

The robust Kalman filter is designed by e(k) passing
through the nonlinearity ® to suppressthe effects of missing
data and impulse noise that might be present, and the next
step is to reconstruct the signal by Kalman filter via robust
residua error e,.(k).

5. DESIGN EXAMPLES

Consider asegment of speechsigna "welcome”  (spoken
in mandarin by afemale), which is digitized at 8 kHz rep-
resented by the 8 bit u-law PCM (pul se code modulation). A
segment of the representative speech signal  ”"welcome”
contains 3800 points. This speech signal is corrupted by
an additive white Gaussian noise n with SNR = 20 db.
A 7"-order (n = 7,q = 0) AR signal generation model
is fitted to this data and the model parameters are obtained
by first stage with frame-length 15 ms. The reconstruction
performanceis compared with method 1(first stage by con-
ventional method [4], second stage by robust Kalman filter),
and method 2 (first stage by conventional method [4], sec-
ond stage by Kalman filter).The reconstruction of the 17th
frame of speech signal is shownin Fig. 2. The signal to er-
ror ratio (SN R,.) with various missing probability is shown
inFig. 3. By inspection of Fig. 3, the proposed method pro-
vides a good reconstruction performance; the SN R ,. gains
are about 4 db over the method 1 and . The performance
of method 1 islower than the proposed method, because the
parameter estimation of method 1 is not accuractein thefirst
stage.

6. REFERENCES

[1] M. J. R. Healy and M. Westmacott, "Missing valuesin
experiments analyzed on automatic computers.” Appl.
Statist. 5, pp. 203-206, 1956.

[2] D. E. Goldberg, Genetic algorithms in search, opti-
mization, and machinelearning, reading, MA: Addition
Wesley, 1989.

[3] M. P. Vecchi and S. Kirkpatrick, "Global Wiring by
Smulated Annealing,” IEEE, Trans. on Computer-
Aided DEsign CAd-2, pp. 215-222, 1987.

[4] S. M. Kay, Modern Spectral Estimation: Theory and
Application Prentice-Hall, Englewood Chiffs, NJ 1987.

01 1
WL 1
o1 \N/\\\J\//\’/\\/M
N Segment length=120 samples 7
. grent eng .
% o0 20

(a) Original speech waveform

Tengih=120 sampies

02
Frame le
01 4
ok 4
o1 |
Ey [y CY EY 0 20

(b) Reconstructed speech waveform by proposed nethod

Tength=120 sampies

02
Frame lengin=130
M W\\M/\/\\J
o R
o1
S O e e 100 120

(c) Reconstructed speech waveform by method 1

(d) Reconstructed speech waveform by nethod 2

Figure 2: Reconstructions of 17th frame of speech by dif-
ferent methods.
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