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ABSTRACT
The effect of missing observations, caused by random sensor er-
rors or periodic blocking of the signal, on the estimation of sig-
nal parameters is to reduce estimator performance. For the class
of polynomial phase signals, existing estimators may suffer a se-
vere degradation in performance depending on the location of the
missing observations. Reasons for the drop in performance are de-
termined and several estimators are proposed which behave well
even with a large proportion of missing observations.

1. INTRODUCTION

The problem of missing observations occurs when a signal be-
comes unavailable. This may occur randomly due to path loss or
sensor failure, and in blocks due to periodically available astro-
nomical observations or misses in passive electronic intelligence
measurements due to antenna sweep-back [1].

Polynomial phase signals (PPS) are suitable models in many
of these applications as they account for the frequency modula-
tion induced by movement, in synthetic aperature radar the signal
is usually assumed to be a linear frequency modulated (LFM) or
chirp signal.

Existing estimators for the parameters of PPS can be quite sen-
sitive to even a small amount of missing observations necessitat-
ing the design of estimators which perform well even with a large
number of missing observations. Here, existing estimators for the
parameters of LFM signals are assessed and several improved al-
gorithms are proposed.

2. SIGNAL MODEL

Consider a nonstationary complex analytic signal z(t) sampled at
the times t ∈ T = {tn, n = 1, . . . , N},

z(tn) = b(tn)As(tn; a) + w(tn), n = 1, . . . , N, (1)

where the b(tn) ∈ {0, 1} indicate the missing observations, A is a
constant amplitude, s(tn; a) is the signal of interest with parame-
ter vector a and w(tn) are independent and identically distributed
(i.i.d) complex circular Gaussian random variables with zero mean

and variance σ2. The problem is to estimate θ = (σ2, A, aT)
T

.
Here, s(tn; a) is a polynomial phase signal (PPS),

s(tn; a) = exp

(


M∑
m=0

amtm
n

)
, a = (a0, . . . , aM )T, (2)
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where M is the order of the PPS. Only the case M = 2 is con-
sidered, so that s(tn) (the reference to a will be dropped when the
meaning is clear) is a LFM signal. Herein the sampling is uniform
in time, tn+1 − tn = ∆ where the sampling period ∆ = 1.

The approach taken to solving the problem (1) depends on the
characteristics of b(tn). Two general cases will be considered, ran-
domly missed observations, and blocks of missing observations.
For randomly missed observations the b(tn) are modeled as i.i.d
Bernoulli random variables, this is denoted model b0,

Model b0: Pr (b(tn) = 1) = 1−p, Pr (b(tn) = 0) = p,

where p is the probability of a missing observation. Contiguous
blocks of missing observations are unlikely in the random misses
model, but are likely in reality. Two possibilities are considered,

Model b1: [Np] observations are missing from the start of
the signal, [·] denoting the integer part,

Model b2: [Np] observations are missing from the centre
of the signal.

These two choices were found to represent well the behaviour of
estimators for blocks of missing observations.

A distinction may be made regarding knowledge of b(tn). If
b(tn) and hence the locations of the missing observations are known,
the problem can be viewed as one of irregular or nonuniform sam-
pling. The more difficult problem occurs when the b(tn) are un-
known. In either case N(1− p) observations contain information
about A and a on the average.

3. BEHAVIOUR OF EXISTING ESTIMATORS

Several estimators for the parameters of PPS exist including max-
imum likelihood estimators (MLE) [2], least squares regression
based on phase unwrapping [3], delay and conjugation based op-
erators such as the discrete polynomial phase transform (DPT) [4]
and extensions to the DPT utilising the ambiguity function. The
performance of the MLE and DPT are considered here for several
reasons. First, the MLE is computationally feasible for LFM sig-
nals and is the optimal estimator in terms of variance. Second, the
DPT is a popular method due to its low computational complexity
and reasonable performance for lower polynomial phase orders.
Methods based on phase unwrapping were found to be very sen-
sitive to even a small proportion (< 5%) of missing observations,
while most other methods have a computational complexity and
performance somewhere between the MLE and DPT.

Any estimator will suffer a degradation in performance as the
number of missing observations increase since the amount of in-
formation available about the parameters is decreased. Next, the
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performance of the MLE and the DPT for LFM signals with miss-
ing observations is considered in more detail.

3.1. Maximum Likelihood Estimation

A computationally efficient MLE algorithm for LFM signals based
on a coarse grid search and a fine Newton-Raphson search was
developed in [2]. This is the MLE referred to herein.

3.1.1. Variance

A guide to minimum increase in the Cramér-Rao bound (CRB)
when observations are missing may be obtained by determining
the CRB for the parameters of interest given that the locations of
the missing observations are known.

First consider the Fisher information matrix (FIM) J for the
case of no missed observations, that is, p = 0. The structure of J

reveals σ̂2, Â and â to be asymptotically mutually independent,

J =

 Jσ2σ2 0
0 JAA

Jaa

 , (3)

where Jσ2σ2 = N/σ4, JAA = 2N/σ2 and (Jaa)ij = 2A2/σ2∑N
n=1 ti+j−2

n .
To proceed, use will be made of the result [5] that for random

sampling schemes each element of the FIM, (J ′)ij , is found by
taking the expectation of each element of the FIM (J(T ′))ij , a
deterministic function of the sampling times T ′, over all possible
sets T ′ ⊆ T of the sampling times.

This result must be applied twice, first to find the information
present in z(tn) when b(tn) = 1 and second to find the informa-
tion present when b(tn) = 0. The reason for this is that infor-
mation about σ2 is present in all observations regardless of b(tn),
while information about the remaining parameters is only present
if b(tn) = 1. As the noise is i.i.d, the general expression for the
FIM when observations are missing is

J bi =

N∑
n=1

J(tn|b(tn) = 0)E [I(b(tn) = 0)] +

J(tn|b(tn) = 1)E [I(b(tn) = 1)] (4)

where I(·) is the indicator function and i = 1, 2, 3 denotes the
three models for the location of missing observations.

For model b0, with Bernoulli random missed observations,
each element of the first term of (4) is zero except for that cor-
responding to σ2, which is pJσ2σ2 . The second term evaluates to
(1− p)J giving the FIM as

J b0 =

 Jσ2σ2 0
0 (1− p)JAA

(1− p)Jaa

 . (5)

For the models b1 and b2 where b(tn) is deterministic the FIM is

J bi =

 Jσ2σ2 0
0 Jb

AA

J b
aa

 , i = 1, 2, (6)

where Jb
AA =

∑N
n=1 JAA(tn)I(b(tn) = 1) and J b

aa =
∑N

n=1

Jaa(tn)I(b(tn) = 1).

Estimation of σ2 is at best unaffected while the CRBs of A and
a increase by at least a factor of 1/(1 − p) for model b0 and by
approximately the same factor for models b1, b2. In the latter case
the exact value depends on A, a, b(tn) and T . These CRBs rep-
resent the minimum variance attainable by any unbiased estimator
when observations are missing.

3.1.2. Bias

Assuming 1) the location of the missing observations are known,
2) the SNR is sufficiently high and 3) T is chosen to avoid aliasing
of the phase parameters [6], the MLE of a is approximately unbi-
ased, this has been verified in simulations. However, a first order
Taylor series expansion shows that even at high SNR the bias in
the MLE of A is approximately−pA and that in the MLE of σ2 is
approximately A2(1− p)p. Note that for p = 0 the bias is zero.

3.2. The DPT

The DPT utilises delay and conjugation operations to transform
the PPS into a single tone, the DPT kernel. Frequency estimation
techniques are then used to estimate the frequency of the DPT ker-
nel DPm, which is a simple function of am. For a LFM signal, one
cycle of the DPT algorithm is required to estimate a2, after which
its effect is removed by demodulation, z(tn) exp(−a2t

2
n). The

demodulated signal is a single tone and the remaining parameters
are found by MLE.

The effects of missing observations on the DPT can be as-
sessed by substituting (1) into the DP2 kernel yielding

DP2 = b(tn)b(tn − τ)A2s(tn)s∗(tn − τ)+

b(tn − τ)As∗(tn − τ)w(tn) + b(tn)As∗(tn)w∗(tn − τ)+

w(tn)w∗(tn − τ), (7)

where the optimal delay is τ = N/2 [4]. The first term is the
single tone while the other terms are considered noise. The ex-
pectation of the signal term at high SNR under model b0 is (1 −
p)2A2s(tn)s∗(tn − τ), so on average only a proportion (1− p)2

of the signal term remains, in effect reducing the sample size. This
effect can be even more severe for blocks of missing observations,
consider model b1 with p = 0.5, then for the optimal τ = N/2
the signal term is removed.

Results on the bias of the MLE carry over to the DPT. Again â2

appears unbiased at high SNR, although its variance is generally
larger. This, coupled with a much smaller allowable range before
aliasing occurs, means the SNR threshold increases and is larger
than that of the MLE. The remaining parameters are found using
MLE, hence the approximate biases found for Â and σ̂2 hold.

To summarise, the effect of missing observations on the DPT
is an increase in the breakdown threshold SNR and an increase in
variance even at high SNR.

4. PROPOSED METHODS

Following from the results of the previous section, modifications
to the MLE and DPT estimator are suggested to improve their
performance for missing observations based on the expectation-
maximisation algorithm and varying the DPT delay parameter.
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4.1. The Expectation-Maximisation Algorithm

As mentioned, the best performance is attained when the locations
of the missing observations are known. This suggests estimating
b(tn) so that noise only observations can be separated from those
containing the signal. The likelihood of the signal parameters can
then be maximised over locations where the signal is likely to exist.

This is essentially the nature of the Expectation-Maximisation
(EM) algorithm [7, 8], as summarised in the context of LFM signal
estimation in Table 1. Briefly, the algorithm consists of two steps.
First, the expected likelihood function conditioned on the current
estimates and the observations is found. Second, the expected like-
lihood is maximised with respect to the parameters, updating the
estimates. The equations comprising the maximisation step are
similar to the MLE except that P̂k(b(tn) = 1|z(tn)), the condi-
tional probability that the signal is present at tn, weights the obser-
vations. This means more weight is placed on observations where
the signal is likely to be present. The interpretation of the remain-
ing conditional probabilities and the probability density functions
f are apparent. Although the algorithm is iterative it is stable, con-
vergence to at least a local maximum of the likelihood is certain.

4.2. A Modified DPT Algorithm

Recall the example where if the first 0.5N observations are miss-
ing then due to the optimal delay parameter being 0.5N for LFM
signals, the signal term is removed from the kernel. By altering
τ to 0.2N , 0.3N samples of the kernel will correspond to the
signal term. Since the mean square error (MSE) in â2 is fairly
constant over the range of delays 0.1N ≤ τ ≤ 0.5N [4], there
is little loss in optimising τ over this range. The criterion for
optimality is chosen to be the empirical MSE of the residuals,
σ̂2, that is, minimise σ̂2(τq) over several delays, q = 1, . . . , Q.
τq = 0.1N + 0.05(q − 1), Q = 8, was used here.

The EM algorithm is also used to estimate the frequency of the
DP2 kernel and the demodulated signal. Again, error in frequency
estimation is reduced by weighting samples where the signal is
likely to exist more heavily. Table 2 summarises the procedure.

5. SIMULATIONS AND DISCUSSION

Simulations were performed for a LFM signal with A = 1, a =
(π/100, π/2, 0)T, N = 31 and t1 = −15 over 100 independent
Monte Carlo realisations for the DPT, MLE, modified DPT and the
EM algorithm. Comparisons were made with the CRBs of (5) and
(6) where appropriate for the three missing observations models
b0, b1 and b2 over 0 ≤ p ≤ 0.4.

For the case of no missing observations it was found that all
estimators achieved the CRB and were unbiased above the DPT
and modified DPT SNR threshold of 5dB, although the MLE and
EM algorithm perform well at even lower SNRs. Figure 1 shows
the MSE of â2 for this case.

For even a small number of missing observations, p = 0.05,
the MLE and DPT estimates for A and σ2 became very poor.

At p = 0.1 the EM and modified DPT estimators perform
well, the latter still achieving the CRB above 5dB, however, the
MLE and DPT begin to show a tendency to be consistently above
the CRB for â2 and â1, the effect being most apparent for model
b1. Figure 2 shows the MSE of â1 for model b1.

Table 1. The EM algorithm for estimating the parameters of a PPS
with missing observations.

1. Initialisation:
Set k=0 and assume an initial value for p̂k.

Obtain an initial estimate, θ̂
k

, using MLE.

2. Expectation Step: Compute the conditional probabilities

f(z(tn); θ̂
k
) = f(z(tn); θ̂

k|b(tn) = 0)p̂k+

f(z(tn); θ̂
k|b(tn) = 1)(1− p̂k)

P̂k(b(tn) = 0|z(tn)) =
f(z(tn); θ̂

k|b(tn) = 0)p̂k

f(z(tn); θ̂
k
)

P̂k(b(tn) = 1|z(tn)) = 1− P̂k(b(tn) = 0|z(tn))

3. Maximisation Step: Update the parameter estimates

âk+1
0 = argmax

a

∣∣∣∣∣
N∑

n=1

P̂k(b(tn) = 1|z(tn))s∗0(tn)z(tn)

∣∣∣∣∣
âk+1
0 = arg

N∑
n=1

P̂k(b(tn) = 1|z(tn))ŝ∗k+1
0 (tn)z(tn)

Âk+1 =

∑N
n=1 P̂k(b(tn) = 1|z(tn))�{ŝ∗k+1

0 (tn)z(tn)
}∑N

n=1 P̂k(b(tn) = 1|z(tn))

σ̂2
k+1

=
1

N

N∑
n=1

P̂k(b(tn) = 0|z(tn)) |z(tn)|2 +

P̂k(b(tn) = 1|z(tn))
∣∣∣z(tn)− Âk+1ŝk+1(tn)

∣∣∣2
p̂k+1 =

1

N

N∑
n=1

P̂k(b(tn) = 0|z(tn))

where a0 = (a1, . . . , aM )T, s0(tn) = s(tn) exp(−a0).

4. Check for convergence:

If |θ̂k+1 − θ̂k| < ε|θ̂k| for each element of θ̂ stop, other-
wise set k → k + 1 and go to step 2.

For p = 0.2 the SNR threshold for the DPT increased to 15dB
for model b0, while the modified DPT maintains a threshold of
5dB, as shown in Figure 3 for â1. For models b1 and b2 the SNR
threshold varies from 5 to 10dB with the phase parameters show-
ing a deviation from the CRB for both the MLE and DPT. How-
ever, the EM and modified DPT still reach the CRB above 5dB.

The DPT essentially fails for p = 0.4 with a MSE far ex-
ceeding the CRB for all parameters. Even the MLE performs
very poorly for models b1 and b2. However, the EM and modi-
fied DPT still attain the CRB with SNR thresholds ranging from
5dB to 15dB.

The phase estimates appear to be unbiased for all estimators
operating above their SNR threshold, the same is true for the EM
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Table 2. The modified DPT algorithm incorporating the EM algo-
rithm and a search for the optimal DPT delay parameter.

1. Initialisation:
Choose a set of delays, 0.1N ≤ τq ≤ 0.5N , q =
1, . . . , Q and set q = 1.

2. Compute the residuals:

Use the DPT with delay τq to estimate θ̂q , σ̂2
q .

Estimate the parameters using the EM algorithm of Ta-
ble 1 where in the first equation of Step 3 maximisation is
carried out over frequency, a1.
If q = Q go to step 3, otherwise set q ← q + 1 and go to
step 2.

3. Optimise the DPT delay parameter:

Choose θ̂q such that σ̂2
q is minimised.
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Fig. 1. MSE of â2 for p = 0.
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Fig. 2. MSE of â1 for p = 0.1 and model b1.

and modified DPT estimates of A and σ2. However, the MLE
and DPT estimates of A and σ2 were clearly biased in very close
agreement with the Taylor series approximations.
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Fig. 3. MSE of â1 for p = 0.2 and model b0.

6. CONCLUSION

The problem of estimating the parameters of PPS when observa-
tions are missing was considered. It was shown that for MLE the
minimum CRB attainable is inversely proportional to the probabil-
ity of a missed observation. It was also shown that the estimates
of A and σ2 are biased. The failure of the DPT was noted and
explained, a modified DPT which made use of the EM algorithm
and the freedom to optimise the delay parameter was proposed.
The performance of the modified DPT and an EM formulation of
the MLE estimator were shown to attain the CRB while existing
methods failed as the number of missing observations increased.

7. REFERENCES

[1] M. Maksimov et al., Radar Anti-Jamming Techniques, Artech
House, 1980.

[2] T. Abatzoglou, “Fast maximum likelihood joint estimation
of frequency and frequency rate,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 22, no. 6, pp. 708–
715, November 1986.
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