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ABSTRACT

A general approach that allows the extension of an CRB-achieving
unbiased frequency estimator developed for the AWGN channel
to be used for the multipath fading channel by using a periodic
transmit sequence is given. The optimality of its performance is
guaranteed in a multipath fading channel under certain conditions.
The proposed method has low complexity but a reduced frequency
operating range. The exploitation of the multipath diversity for
fading channel is also investigated. It is illustrated through a cor-
relation based frequency estimator how the general approach can
be used, leading to a known estimator being used in a novel way.

1. INTRODUCTION

High performance frequency estimators in AWGN channel has
been well explored. Estimators such as based on the correlation of
the received signal [1] and maximum likelihood estimators (MLE)
[2], are able to achieve the Cramer-Rao bound (CRB) when the
signal-to-noise ratio (SNR) exceeds their associated threshold SNR.

In multipath fading channels, the problem of performing fre-
quency offset estimation is two-fold: multipaths introduces inter-
symbol-interference (ISI) hence introducing memory into the sys-
tem and leading to increase complexity, while fading channels
causes the signal to fade in certain time instants such that esti-
mation is unreliable. Previous work in multipath channel develop
the estimators by considering the problem of frequency estimation
[3, 4] from scratch. The estimators have relatively high complexity
and their applicability in fading channels are not discussed.

For multipath channels, an alternative approach is to design a
periodic transmit sequence (possibly in communication systems)
such that complexity is reduced without significant performance
degradation [3]. Motivated by this, we give a general method to
extend any estimator E developed in AWGN channel to be used
in a multipath fading channel and call it estimator M. When
E achieves the CRB, we state the sufficient conditions when M
achieves the CRB in a multipath fading channel. This result im-
plies that any estimators developed for AWGN can be applied op-
timally for the multipath case. We also calculate the degradation
when the channel is multipath fading compared to a multipath non-
fading case, leading to the observation that multipath diversity is
exploited so that the performance in a fading channel is main-
tained. We further illustrate how to develop estimator M with
E as a low complexity correlation based estimator [1] , and show
that it indeed achieve the relevant CRB at high SNR.

The following notations are adhered to. Bold lower case letters
are used to denote column vectors. Bold upper case letters are
used to denote matrices. The superscripts ∗, T and H are used to

denote complex conjugate, transpose and Hermitian, respectively.
The (i, j)th element of X is denoted as [X]ij ; the ith element of
x as [x]i.

2. PROPOSED METHOD

We first state the CRB for different channel conditions and detailed
the steps to develop the estimator M.

2.1. CRB for Different Channels

Consider MN samples of a complex sinusoid xk, k = 0, 1, · · · ,
MN − 1, arranged as a vector x

x = Γ(ω)[s0 · · · sMN−1]
T + v (1)

received in independent zero mean complex AWGN v, with each
element vk of variance σ2. Γ(ω) is a square diagonal matrix with
the kth diagonal element being exp(jωk), and sk and ω are de-
terministic values of the complex transmit sequence and frequency
of the sinusoid respectively. With sk = s, independent of k, and
SNR = |s|2/σ2, the estimation of ω has a CRB given as [2]

CRBawgn(ω) =
6

MN [(MN)2 − 1]SNR
. (2)

For multipath channels, the received signal becomes

x = Γ(ω)Sh + v (3)

where S is a MN×M data Toeplitz matrix with elements [S]ij =
si−j , 0 ≤ i ≤ MN−1, 0 ≤ j ≤ M−1 and h = [h0 · · ·hM−1]

T

is the channel vector. The CRB given a multipath channel h is [3]

CRBmulti(ω|h) =
σ2

2yH(I−B)y
(4)

where y = KSh,B = S
(
SHS

)−1
SH and K is a diagonal

matrix with the kth diagonal element being k.
Now, we restrict the class of preamble as a periodic sequence

with periodicity matched to the length of the channel, M . De-
noting k = nM + m, we thus have sk = sm, where m can be
alternatively obtained as k modulo M . Defining the M ×M ma-
trix S̃ with the (i, j)th element being s indexed with i− j modulo
M , S becomes

S = [S̃T · · · S̃T ]T . (5)

The CRB for the multipath channel with periodic sequence (a sub-
script p is added) can be obtained by substituting (5) into (4):

CRBmulti,p(ω|h) =
6σ2

M2N(N2 − 1)hH S̃H S̃h
. (6)
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The signal power is defined σ2
s(h) = ‖S̃h‖2/M , and the SNR

SNR(h) = σ2
s(h)/σ2 (7)

so that the they are consistent with the definitions for the AWGN
channel. With this, (6) becomes

CRBmulti,p(ω|h) =
6

MN [(MN)2 −M2]SNR(h)
. (8)

Comparing this with a AWGN channel using (2), the CRB is in-

creased by a factor of M2−1/N2

M2(1−1/N2)
≥ 1 which approaches 1 when

N is large. Thus, using a periodic sequence reduces the CRB
slightly, but is well motivated due to the savings in complexity
as detailed subsequently.

Several methods for deriving the CRB are possible when the
channel is multipath fading. We make use of the modified CRB [5]
which is found to give the tightest bound for our purpose here (see
[7] for discussion on other methods). Assuming that an unbiased
estimator exists such that the bound CRBmulti,p(ω|h) is attained
for any probable h, the modified CRB for a multipath fading chan-
nel is obtained by taking the expectation of (8):

CRBfade,p(ω) = Eh [CRBmulti,p(ω|h)]

=
6

MN [(MN)2 −M2]
Eh

[
SNR−1(h)

]
. (9)

2.2. Proposed Method and its Properties

We consider the specific case of performing frequency offset es-
timation based on a transmitted periodic sequence, such as in the
standards of IEEE 802.11a [6]. Each periodic segment with length
M is referred to as a short preamble, and the total number of short
preamble is N + 1. In [6], we have M = 16 and N = 9.

To provide a tractable solution for frequency offset estimation,
we discard the first M received samples which is corrupted by ISI,
and hence obtain (3). Substituting (5) into (3), the received signal
is represented as N vectors each of size M × 1 :

xn = Γn(ω)r̃ + vn, n = 0, · · · , N − 1, r̃ , S̃h (10)

where with k = nM + m, [xn]m = xk, [vn]m = vk and Γn(ω)
is diagonal with the mth element as exp(jωk). Using (10) , we
define

Y , [x0 x1 · · ·xN−1]
T

= [Γ0(ω)r̃ · · ·ΓN−1(ω)r̃]T + [v0 · · ·vN−1]
T (11)

Define r̃m = [r̃]m. Let the mth column of Y be

y(m) , y
s(m) + u(m) (12)

where ys(m) = r̃mejw(m−1)
[
1 ejωM · · · ejω(N−1)M

]
is the

signal part with and u(m) is still AWGN of variance σ2. Note
that y(m) corresponds to transmitting r̃mejw(m−1) with carrier
frequency ωM in an AWGN channel. Using data {y(m)}M−1

m=0 ,
we propose estimator M for ω according to the following steps:

S1: pick an unbiased estimator E consisting of, without loss of
generality, cascaded filters f1 and f2

S2: perform maximal ratio combining (MRC) after filter f1 so
that the SNR after MRC is maximized (if and only if the
sum of individual SNR is equal to the SNR after MRC)

 

f1(.) f2(.) 

SNRi(m)=SNR(m) 

estimator 
�

 

SNRo(m)=k SNR(m) 

yn(m) = yn
s(m) + vn(m) f1(yn(m))  

Fig. 1. Model of estimator used for Properties 1 and 2. 

f1(
.) f2(

.) 

 
k ΣmSNR(m) MRC 

 
ΣmSNR(m) 

MRC before estimator �  (before f1) 

f1(
.) 

f2(
.) MRC 

f1(
.) 

k SNR(M-1) 

MRC during estimator �  (after f1) 

: 
 

yn(M-1): SNR(M-1) 

yn(0): SNR(0) 

: 
 

yn(M-1): SNR(M-1) 

yn(0): SNR(0) 

: 
 

k SNR(0)  
k ΣmSNR(m) 

Fig. 2. MRC before or after f1 results in a statistically equivalent
data input to f2, based on model in Fig. 1.

S3: divide the combined estimate by M to obtain the final esti-
mate for ω

We next remark on some of the properties of estimator M.
Property 1: Step S2 is equivalent to performing MRC at the

input, given estimator model in Fig. 1 where the ratio of the output
and the input SNR of the first filter is independent of m:

SNRo

SNRi
= k, a constant. (13)

This property is illustrated through Fig. 2 where the estimator is
modelled with Fig. 1. Note that filter f2 cannot distinguish (statis-
tically) whether the MRC, a linear operation across m, is carried
out before or after f1. Thus, performing MRC before or after filter
f1 causes the estimator E to achieve the same performance.

Property 2: If the estimator E achieves CRBawgn(ω), then esti-
mator M achieves CRBmulti,p(ω|h) in a multipath channel, and
CRBfade,p(ω) in a multipath fading channel if E is unbiased for
any probable channel h.

Proof: To show that the specified bounds are achieved, instead
of using MRC after f1 in step S2, we use MRC at the input. Both
approaches gives the same performance by Property 1.

For step S1, we choose a CRB-achieving estimator E . If we
apply it on each data vector ym, the estimator variance is

σ2
E(Nω) =

6

N(N2 − 1)SNRm
, m = 0, · · · , M − 1, (14)

where SNRm = |rm|
2/σ2, as given in (2). Clearly, an arbitrary

combining of the data is sub-optimal. Using MRC on ym, before
f1, the SNR is SNRMRC =

∑M
m=1 SNRm. Using r̃ = S̃h and

(7), we note that SNRMRC = ‖r̃‖2/σ2 = MSNR(h). Replacing
SNRm as SNRMRC in (14), the variance of the estimator after step
S2 is equivalently

σ2
S2(Mω) =

6

MN(N2 − 1)SNR(h)
. (15)

Dividing the combined estimate by M as required by step S3 re-
duces the variance by M2, which is equivalent to (8), thus achiev-
ing the CRB in a multipath channel.

Furthermore, we note from (9) that implies that sinceM achieves
CRBmulti,p(ω|h) in a multipath channel, if E is unbiased for any
probable channel h, M also achieves CRBfade,p(ω).
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Property 3: Assume a complexity of C1(N) and C2(N) mul-
tiplications using estimator E operating on N data points, corre-
sponding to complexity of filters f1 and f2, respectively. From
Fig. 2, using estimator M with MRC at the input incurs a com-
plexity of M + C1(N) + C2(N), since MRC requires M mul-
tiplications. However, this requires knowledge of r̃mejω(m−1)

which is not known and is therefore not practical. Instead, we
need to find a suitable filter f1 where performing MRC after f1

requires only known information; the complexity is increased to
M + MC1(N) + C2(N). The complexity may still be smaller
when an arbitrary transmit sequence is used and the complexity
incurred is (usually at least) C1(MN) + C2(MN), especially so
when the rate of increase of the filters’ complexity with data length
is faster then linear.

Property 4: Using M would imply using a lower sampling rate
of 1/M times the baud rate fs. This implies that the maximum
frequency that can be detected is ±fs/(2M) (instead of ±fs/2 if
the baud rate sequence is used).

3. EFFECT OF MULTIPATH DIVERSITY ON
FREQUENCY ESTIMATION

We first develop a robust transmit sequence that minimizes the
maximum CRB for any arbitrary multipath channel. Based on this,
we explore the degradation of the CRB in a multipath fading chan-
nel as compared to a non-fading one which is found to be small if
the multipath diversity is sufficiently rich.

3.1. Training Sequence Selection

Denote the eigendecomposition S̃ = FHΛF, where F is an uni-
tary matrix whose columns are the eigenvectors and Λ is a diago-
nal matrix with eigenvalue λm as its mth element on the diagonal.
Next, defining hF = Fh, then hH S̃H S̃h becomes hH

F |Λ|
2hF .

To select an appropriate transmit sequence independent of the chan-
nel statistics, we choose the criteria that minimizes the worse CRB
for an arbitrary h:

min
Λ

{
max

h

CRBmulti,p(ω|h)
}

= min
{λ2

m
}

{
max
hF

1∑
m λ2

m|hF,m|2

}

(16)
where [hF ]m = hF,m. We subject (16) to the transmit power
constraint that tr(S̃H S̃) =

∑M
m=1 λ2

m = Mσ2
s , and that channel

is non-fading (but arbitrary) such that hHh = hH
F hF is constant.

Without loss of generality, re-indexed λ2
m such that λ2

0 ≤

λ2
1 ≤ · · · ≤ λ2

M−1. With that,
(∑

m λ2
m|hF,m|

2
)−1

is maxi-
mized when |hm,F |

2 takes the value hHh for m = 0, and the
value 0 otherwise. Therefore (16) becomes

min
{λ2

m
}

{
(λ2

0h
H
h)−1

}
= min

{λ2
m
}

{
(λ2

0)
−1} = max

{λ2

0
}

{
λ2

0

}
.

The largest possible value of λ2
0 is

∑
m λ2

m/M = σ2
s when λ2

m =
σ2

s , independent of m. This choice of transmit sequence, though
not optimal for CRBfade,p(ω) with some channel distribution, is
robust and leads to ease of developing analytical solutions.

3.2. Multipath Diversity

In wireless systems, the Rayleigh fading channel is modelled by
assigning hm’s as independent zero mean circular complex ran-
dom variables. The variance of each channel taps, E[hmh∗m], m =
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Fig. 3. Degradation of CRB for multipath fading channel when
compared to a multipath non-fading channel.

0, · · · , M − 1, depends on the power delay profile. For a uniform
power delay profile, E[hmh∗m] = 1/M while for an exponential
power delay, E[hmh∗m] = exp(−m/τrms)/P , where P is de-
fined such that

∑M−1
m=0 E[hmh∗m] = 1, and τrms is a parameter

describing the slope of the decay of the power delay profile.

Consider the value α , Eh

([
hH S̃H S̃h

]−1
)

which re-

duces to Eh

([
σ2

sh
Hh

]−1
)

when chosen according to Section

3.1. When the channel has a uniform delay profile with E[hmh∗m] =
σ2

h, then it can be shown that α = [(M−1)σ2
hσ2

s ]−1. Substituting
this result into (9), we get

CRBfade,p(ω) =
6

M2N(N2 − 1)(M − 1)SNRf
(17)

where the SNR for the multipath fading channel is SNRf =
σ2

h
σ2

s

σ2 .
Comparing (17) with (8), and setting SNRf = SNR(h), we note
that a degradation of 10 log10 M/(M − 1) is incurred when com-
pared to the non-fading channel. Thus, if the channel has sufficient
multipath diversity by having large M , the performance degrada-
tion is small, as shown on the left graph of Fig. 3.

When the channel has an arbitrary (such as exponential) power
delay profile , α may not have a closed form expression, in which
case we need to perform an numerical integration or Monte Carlo
simulation. The latter approach is used to plot Fig. 3 (right graph)
for a channel with M = 16 multipaths. When τrms = 1, it de-
grades as if it has 3 multipaths when the power delay profile is
uniform; when τrms = 5, it degrades as if it has 10. Thus, a
power delay profile close to a uniform one will also contribute bet-
ter in multipath diversity. Besides multipath diversity, exploitation
of transmit and receive antenna diversity can be carried out as well.

4. IMPLEMENTATION

As an example to implement estimator M, we consider using one
of the estimators described in [1] as estimator E :

E({yn(m), n = 0 , · · · , N − 1}) =

N−2∑

n=0

wn arg(cn(m)) (18)

cn(m) , yn+1(m)y∗n(m),

wn ,
3N

2(N2 − 1)

[
1−

(
n− (N/2− 1)2

N/2

)]
.
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We separate the estimator as consisting of filter f1:

f1(yn(m)) = cn(m) = exp(jωk)×
[
|r̃m|

2 + r̃mu∗n(m)

+ r̃∗mun+1(m) + u∗n(m)un+1(m)] , (19)

which is evaluated using the definition in (12), and the subsequent
operations as filter f2(cn(m)). From (19), the first term is the
signal and the rest are noise terms and thus the SNR after f1 is

SNRo(m) =
|r̃m|

4

2|r̃m|2σ2 + σ4
≈
|r̃m|

2

2σ2
(20)

where the approximation is valid when σ2/|r̃m|
2 � 2 or when

SNR is high, i.e. approximately SNRm � 1/4. Since the in-

put SNR is SNRi(m) = |r̃m|
2/σ2, SNRo

(m)

SNRi
(m)

= 0.5, a constant.

Thus, the assumption of (13) is satisfied.
When we sum cn,k(m) for all m, the signal components |r̃m|

2

add coherently while the noise components do not, thus the effec-
tive SNR increases:

Cn ,

M−1∑

m=0

cn(m)

= exp(jω)×

[
M−1∑

m=0

|r̃m|
2 +

M−1∑

m=0

r̃mu∗n(m)

+

M−1∑

m=0

r̃∗mun+1(m) +

M−1∑

m=0

u∗n(m)un+1(m)

]
. (21)

with the effective SNR of Cn being

SNRe =

∣∣∣
∑M−1

m=0 |r̃m|
2
∣∣∣
2

2
∑M−1

m=0 |r̃m|2σ2 + Mσ4
≈

∑M−1
m=0 |r̃m|

2

2σ2
(22)

The approximation made is valid when Mσ2 � 2
∑M−1

m=0 |r̃m|
2,

or when SNR is high, i.e. approximately SNRe � M/4. Not-
ing that SNRe is a sum of all individual SNRo(m), we conclude
that Cn,k maximizes SNR when SNR is high, and is equivalent to
performing MRC after f1. Advantangeously, no additional infor-
mation about the channel or even transmit sequence is required.

Finally, incorporating step S3, the estimator M is:

M =
1

M

N−2∑

n=0

wn arg(Cn). (23)

The simulation based on (23) is shown in Fig. 4 with N = 9, M =
16. It is seen that it indeed attains CRBfade,p(ω). Because the
channel is chosen so that τrms = 1, a degradation of about 2 dB
(see Fig. 3) separates the bound of the fading channel to the non-
fading channel. It is also seen that the bound for AWGN channel
is very close to that for a multipath channel.

5. CONCLUSION

We have proposed a set of procedures to extend an estimator used
in an AWGN channel to be used in a multipath fading channel by
using a periodic transmit sequence. We have derived the sufficient
conditions such that the extended estimator achieves the CRB un-
der different channel conditions as well. We have also designed a
robust transmit sequence such that a minimum CRB is guaranteed
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Fig. 4. Proposed estimator M using estimator E based on (23).

for arbitrary multipath channel, and illustrated that as multipath di-
versity increases, the CRB for multipath fading channel approach
the CRB for a non-fading channel and quantified the degradation.
Based on the sufficient conditions, we generated a practical estima-
tor which indeed achieve the CRB for a multipath fading channel.
Our future work would include proposing other estimators.
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