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ABSTRACT

In this work the G0
A distribution is assumed as the universal model

for amplitude Synthetic Aperture (SAR) imagery data under the
Multiplicative Model. The observed data, therefore, is assumed to
obey a G0

A(α, γ, n) law, where the parameter n is related to the
speckle noise, and (α, γ) are related to the ground truth, giving
information about the background. Therefore, maps generated by
the estimation of (α, γ) in each coordinate can be used as the input
for classification methods. Maximum likelihood estimators are de-
rived and used to form estimated parameter maps. This estimation
can be hampered by the presence of corner reflectors, man-made
objects used to calibrate SAR images that produce large return val-
ues. In order to alleviate this contamination, robust (M) estimators
are also derived for the universal model. Gaussian Maximum Like-
lihood classification is used to obtain maps using hard-to-deal-with
simulated data, and the superiority of robust estimation is quanti-
tatively assessed.

1. INTRODUCTION

Statistical modeling has provided some of the best tools for pro-
cessing and understanding SAR images. Among the available mod-
els, the Multiplicative Model is probably the most successful [1].
It consists of a set of distributions that, with few parameters, are
able to characterize SAR data.

Application of the G′
A distribution to the MM provided a quite

general and tractable extension: the Universal Model (UM [2]),
and it is known to be a useful tool for describing and classifying
SAR returns [3, 4].

In this paper, the G0
A distribution is assumed as the UM for am-

plitude SAR imagery data under the multiplicative model. Thus,
the return obeys a G0

A(α, γ, n) law where the parameters (α, γ)
are related to the ground truth (roughness and scale, respectively)
and the parameter n is related to the speckle noise.

A robust estimation of these parameters is of paramount im-
portance as SAR images are commonly corrupted by the effect of
corner reflectors. These area devices essential to data calibration
that result in much higher pixel values than the rest of the image.

The authors have addressed the problem of robust estimation
in the single look (noisiest) situation [5], finding M-estimators of
(α, γ). It should be noted that M-estimators commonly used with
symmetric distributions [6, 7] were derived in a context whereby
the density functions under consideration can be highly assymmet-
rical. Other model widely used in signal processing is the one that
uses α-stable distributions, which are highly assymetrical [8]

The approach here proposed employs Maximum Likelihood
and M-estimators for the parameters (α, γ) of the G0

A distribu-

tion. Maps generated using these estimators are used as input to
a supervised classification based on Gaussian Maximum Likeli-
hood. This classification scheme, using moment estimators, was
proposed in [3].

Section 2 introduces the model together with the main prop-
erties of the G0

A distribution. The parameter estimation methods
are derived in section 3. The supervised classification results are
discussed in section 4.

2. NOTATION AND MODEL DEFINITION

The Multiplicative Model is widely used in SAR images process-
ing, and it is a common framework to explain the stochastic be-
havior of data obtained with coherent illumination as is the case of
sonar, laser and B-scan ultrasound. This model states that the re-
turn Z is composed by the multiplicative mixture of speckle noise
X and backscatter properties Y .

Under this framework, the G0
A model stems from assuming

that the backscatter X obeys a Γ−1/2(α, γ) law, while the speckle
noise, Y , is independent ofX and follows a Γ1/2(n, n) law, where
n is the number of looks of the image. Thus, the amplitude return
Z has a G0

A(α, γ, n) distribution whose density is given by

fZ(z) =
2nnΓ(n− α)

γαΓ(−α)Γ(n)

z2n−1

(γ + z2n)n−α
I(0,∞)(z), (1)

where −α, γ > 0, n ≥ 1 and I(a,b)() denotes the indicator func-
tion of the interval (a, b), i.e.

I(a,b)(x) =

{
1 if x ∈ (a, b)
0 else

and Γ(·) is the Gamma function
(
Γ(t) =

∫∞
0
xt−1e−xdx

)
.

The parameter α in equation (1) describes the roughness of
the target. Small values of α (α < −15) are usually associated to
homogeneous targets, like pasture. Values of α ranging between
[−15,−5] usually characterize heterogeneous clutter, like forests,
and large values (−5 < α < 0 for instance) are observed when
extremely heterogeneous areas are imaged. The γ parameter is
related to the scale, that is, if Z ′ ∼ G0

A(α, 1, n) distributed then
Z =

√
γZ′ obeys a G0

A(α, γ, n) law. The parameter n is related
to the multilook processing in SAR images, and is controlled by
the image generation process.

The r-th moments of the G0
A(α, γ, n) distribution are

E(Zr
A) =

(γ
n

)r/2 Γ(−α− r/2)Γ(n + r/2)

Γ(−α)Γ(n)
,

if α < −r/2 or infinite otherwise for every n ≥ 1.

VI - 5570-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



This work deals with the noisiest class of amplitude images,
i.e., with raw data where no multilook processing is performed.
Dropping the parameter n = 1, the single-look G0

A (α, γ) distribu-
tion is characterized by the following probability density function:

f (x, (α, γ)) =
−2αx

(
1 + x2

γ

)1−α I(0,+∞) (x) , (2)

where the parameters space is −α > 0, γ > 0.
The multilook, intensity and complex versions of this distribu-

tion can be seen in [2].
The corresponding score function is given by

s(x, (α, γ)) =

(
s1(x, (α, γ))
s2(x, (α, γ))

)

=




1
α

+ ln

(
1 +

(
x√
γ

)2
)

−α
γ
− 1−α

γ+x2


 .

and the cumulative distribution function is given by

F (x, (α, γ)) =

(
1 −

(
1 +

x2

γ

)α)
I(0,+∞)(x).

This distribution can be derived as the square root of the ra-
tio of two independent random variables: one having a unitary-
mean exponential distribution (which conveys the speckle noise
in one look) and the other following a Γ(α, γ) distribution, re-
lated to the unobserved ground truth, the backscatter. Densities
of this functions are illustrated in figure 1, for the situations α ∈
{−1.5,−4,−10} and the scale parameter γ adjusted to have uni-
tary mean.

Fig. 1. G0
A densities, α ∈ {−1.5,−4,−10} (solid line, dotted,

dashes, respectively).

3. INFERENCE FOR THE G0
A MODEL

Let Θ = {(α, γ) : α < −1.0, γ > 0} and R be the set of real
numbers. Let X1, . . . , XN be a sample of independent identically

distributed random variables with G0
A(α, γ) distribution. The max-

imum likelihood estimators of (α, γ) based on X1, . . . , XN , de-
noted α̂ML,N and γ̂ML,N respectively, are given by

α̂ML,N = −
(

1

N

N∑

k=1

ln

(
1 +

(
Xk√
γ̂ML,N

)2))−1

(3)

and

γ̂ML,N =


1 + 2

(
1

N

N∑

k=1

ln

(
1 +

(
Xk√
γ̂ML,N

)2))−1



· 1

N

N∑

k=1

X2
k

1 +

(
Xk√

γ̂ML,N

)2 . (4)

In order to define the M-estimators a contamination model is
assumed. That is, X1, . . . , XN is taken to be a sequence of inde-
pendent identically distributed random variables with cumulative
distribution function F (·, (α, γ) , ε, z) given by

F (x, (α, γ) , ε, z) = (1 − ε)F (x, (α, γ)) + εδz (x) (5)

where δz (x) = I[z,+∞) (x), with z a “very large” value with re-
spect to most of the values typically assumed by a random vari-
able with distribution G0

A (α, γ). Equation (5) describes a contam-
ination that occurs at random with probability ε, i.e., in average
Nε out of N samples will be “very large” fixed values (z), while
N −Nε samples will obey the G0

A (α, γ) distribution. Other con-
tamination hypothesis may include different distributions for the
departure of the model, and/or spatial dependence among observa-
tions.

The M-estimators of the parameters (α, γ) based onX1, . . . , XN

are given by the solutions α̂M,N , γ̂M,N of the system

∑N
k=1 ψb1 (s1(Xk, (α̂M,N, γ̂M,N)) − c1(α̂M,N, γ̂M,N, b1)) = 0∑N
k=1 ψb2 (s2(Xk, (α̂M,N, γ̂M,N)) − c2(α̂M,N, γ̂M,N, b2)) = 0

(6)
where ψbi

: R×Θ → [−bi, bi], i = 1, 2 are the Huber’s functions:

ψbi
(x) =





−bi if x ≤ −bi

x if − bi < x < bi
bi if x ≥ bi.

(7)

The functions ci : Θ × (0,+∞) → R are defined so that the se-
quence of estimators (α̂M,N, γ̂M,N)N is asymptotically unbiased,
Fisher consistent of (α, γ). That is,
{ ∫

ψb1 (s1(x, (α, γ)) − c1(α, γ, b1)) f(x; (α, γ))dx = 0∫
ψb2 (s2(x, (α, γ)) − c2(α, γ, b2)) f(x; (α, γ))dx = 0

(8)
for any (α, γ) ∈ Θ, b1 > 0 and b2 > 0. The constants b1 and b2
are the tuning parameters of the M-estimators.

A comparison among different estimators for roughness and
scale parameters of the G0

A distribution was performed in [9], where
no contamination was considered, and the α̂ML estimator was the
best estimator in almost all cases in terms of mean square error and
bias, assuming γ known. In [5] it is shown that if the sample is con-
taminated by a percentage of “outliers” the behavior of classical
estimators is unreliable, while the performance of M-estimators is
good.
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4. RESULTS

In this section three classification procedures in SAR images where
corner reflectors are present will be compared using Gaussian Max-
imum Likelihood: the first one using the result of filtering data by
an adaptive Lee filter as an input, the second and third ones us-
ing the ML- and M-estimates of the parameters (α, γ) of the G0

A

distribution as input, respectively. In each situation the size of the
filtering window was 7 × 7.

Although there exist several supervised classification techniques
(see, for instance, [10]), the one chosen here is one of the most
widely used techniques and it is simple to implement.

By using stochastic simulation the three procedures were tested
in a simulated SAR image where four different classes were con-
taminated by corner reflectors. The phantom of four classes (figure
2 left) and the distributions for each class were proposed in [3] as
a benchmark for classification procedures assessment. It is used
here in order to assess the effect of corner reflectors on the classifi-
cation, and to show that robust procedures overcome the influence
of such contamination.

The results are presented in thematics maps, were each pixel is
labeled by a color representing the class it belongs to. The assess-
ment is performed visually and presenting tables (confusion matri-
ces) that summarize the results and allow the comparison among
procedures. In [3] different results were obtained mainly due to
two facts: (i) no contamination is present, and (ii) estimators based
on moments were used.

The data set shown in figure 2 left, was obtained sampling
independent observations from four different G0

A(α, γ) laws, char-
acterized by two values of α and two values of γ. The values of α
were chosen to represent heterogeneous (α1 = −5.0, top row of
the image) and extremely heterogeneous (α2 = −1.5, bottom row
of the image) areas. For each α, the two different values of γ are
γ1 = 2 · 105 and γ2 = 4 · 105. As it was already mentioned, the
number of looks is n = 1, the noisiest situation.

Some corner reflectors were introduced in the data set, in order
to evaluate the behavior of these procedures when the data are not
free of this kind of spurious values.

In figure 2 right it is shown the result of the simulation before
the introduction of the corner reflectors, being the colored spots
the training areas.

Fig. 2. Phantom and return with training data (colored spots).

The Gaussian Maximum Likelihood algorithm was used to
classify the data shown in Figure 2. The first procedure used the
Lee filtered data with a sliding window of size 7 × 7 (Figure 3
left) as an input. It should be noted that the Lee filter is known to
fail in providing reliable data for the classification [3] of speckled

imagery. In this work, with contaminated data, this classification
technique only identified two classes (Figure 3), and therefore its
application is again unacceptable.

Fig. 3. Lee filtered image.

Figure 4 (left and right) shows the maps that resulted of ap-
plying the ML estimators of (α, γ) given by equations (3) and (4)
respectively, to the image shown in Figure 2 right. The confussion
matrix of this classification is shown in table 1, the overall accu-
racy is 54.24 %, and κ = 0.39. The classification map is shown
in Figure 5. It can be seen that this classification procedure was
not able to eliminate the corner reflectors, some of them were clas-
sified as urban area. It can not distinguish between the different
scales γ (brightness) in extremely heterogeneous areas.

Fig. 4. Left: α̂ML map, right: γ̂ML map.

Fig. 5. Gaussian Maximum Likelihood Classification using the
(α̂ML, γ̂ML) map.

Figure 7 shows the maps that resulted of applying the M esti-
mators of (α, γ) given by equation (6) to the original image (Fig-
ure 6). The confusion matrix of this classification is shown in
Table 4, being the overall accuracy 81, 12% and κ = 0.74. It
can be seen that this matrix is better than the one obtained with
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Class/True C1 C2 C3 C4

C1 22.28 22.57 34.70 1.88
C2 0.00 37.74 0.89 0.00
C3 2.60 39.68 64.41 0.00
C4 75.12 0.00 0.00 98.12

Table 1. Confusion Matrix for the Gaussian Maximum Likelihood
Method using the (α̂ML, γ̂ML) map as input.

the (α̂ML, γ̂ML) input. As it was expected, the presence of corner
reflectors did not spoil the classification, as happened in the ML
procedure. More features and borders are retained with this pro-
cedure than using the ML estimators. From the figures presented
here, it is possible to note that M-estimators are able to separate
regions with different roughness and scale (α, γ) even in the pres-
ence of corner reflectors, what leads to a better classification. The
numerical problems reported in [3] were overcome for both, ML
and M-estimators.

Fig. 6. Left: α̂M map, right: γ̂M map.

Fig. 7. Gaussian Maximum Likelihood Classification using the
(α̂M, γ̂M) map.

5. CONCLUSIONS

In this work Gaussian Maximum likelihood classification was ap-
plied to features extracted from a simulated image with four dif-
ferent classes representing four different ground covers contami-
nated by corner reflectors. Three classification procedures were
compared: one using the result of filtering data by an adaptive Lee
filter as an input, the second and third ones using the ML-estimates
and M-estimates of the parameters (α, γ) of the G0

A distribution as
input, respectively. The method involving the Lee filter as an in-
put failed to classify the image. Among the other two methods,

Class/True C1 C2 C3 C4

C1 92.15 0.00 15.51 32.97
C2 0.37 88.14 6.44 0.36
C3 0.37 11.86 78.04 0.18
C4 7.10 0.00 0.00 66.48

Table 2. Confusion Matrix for the Gaussian Maximum Likelihood
Method using the map (α̂M, γ̂M) as input

the M-estimator was the best, in the sense that it classified more
accurately the different classes, preserved more details and it was
not as corrupted by the presence of corners as the ML one. The
results here obtained motivate the use of M-estimators in signal
processing techniques, because returns as those caused by corner
reflectors are present in the images.

Since speckle noise and corner reflector returns also appear
in ultrasound B-scan, sonar and laser images, the procedure here
presented has potential application in all these techniques.
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