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ABSTRACT

The problem of position estimation from Time Difference
Of Arrival (TDOA) measurements occurs in a range of ap-
plications from wireless communication networks to elec-
tronic warfare positioning. Correlation analysis of the trans-
mitted signal to two receivers gives rise to one hyperbolic
function. With more than two receivers, we can compute
more hyperbolic functions, which ideally intersect in one
unique point. With TDOA measurement uncertainty, we
face a non-linear estimation problem. We here suggest and
compare both a Monte Carlo based method for position-
ing and a gradient search algorithm using a non-linear least
squares framework. The former has the feature to be easily
extended to a dynamic framework where a motion model
of the transmitter is included. A small simulation study is
presented.

1. INTRODUCTION

Figure 1 illustrates how two cooperating receivers can cal-
culate a path difference from the time-difference of arrival,
and how this path difference corresponds to a hyperbolic
function [1]. We point out two important applications where
this problem occurs:

• Mobile terminal positioning. The available measure-
ments are either network-assisted or mobile-assisted,
using up-link or down-link information. For an overview,
see [2, 3]. The current ’yellow page’ services are
based onReceived Signal Strength (RSS) of signals
with known powers and a courseAngle measurement
from the sector antenna [4, 5]. This gives a quite
course estimate. It is well-known [6, 4, 1] that a much
higher accuracy rather insensitive to fading is based
on time of arrival (TOA). In future system, only the
time difference of arrival (TDOA) or enhanced ob-
served time difference (E-OTD) measurements may
be possible to compute. Another source of informa-
tion for tracking moving objects is map information,
see [7].
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Fig. 1. The hyperbolic function representing constant
TDOA for three different TDOA’s (0.4, 0.6 and 0.9 scale
units, respectively).

• Electronic warfare, where the problem is to accurately
locate enemy transmitters to be able to make appro-
priate countermeasures. The TDOA approach may
here offer higher accuracy than traditional triangula-
tion approaches, where the angular measurements po-
tentially have larger inaccuracy than TDOA measure-
ments.

The TDOA measurement is computed as follows:

1. The sender transmits a signals(t) which is delayed
τi to receiveri according to distance to each receiver.
The signal can either be a pilot from a mobile (up-
link), where the mobile’s absolute time is unknown,
or it can be unknown, as is the case in electronic war-
fare. In either case,τi cannot be computed.

2. Correlation analysis provides a time delayτi−τj cor-
responding to the path difference to receiversi andj.

In [8], a general framework covering all these kind of mea-
surements (TOA, TDOA, E-TDOA, RSS, Angle, Map) is
given, provided that a motion model for the transmitter is
available. That is, a dynamic framework is assumed, and
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the particle filter is suggested. We here study the static case,
where we have only one TDOA measurement for each pair
of receivers. We will compare a particle filter based esti-
mator with a least mean square (LMS) algorithm in a non-
linear least squares framework.

2. TDOA MEASUREMENTS

The received signals are

yi(t) = ais(t − τi) + ei(t), i = 1, 2, . . . n (1)

where the receiveri is located atxi, yi and the transmitter
is in x, y, which is unknown.

With known references(t) and perfect synchronization,
we can directly estimateτi (TOA), and estimate(x, y) using
a non-linear least squares framework, similar to GPS.

With unknown reference, the simplest idea is to com-
pare the received signals pairwise. Assume a correlation
function that pairwise computes an estimate of

∆di,j = v(τi − τj), 1 ≤ i < j ≤ n. (2)

wherev is the speed of sound, light or water vibrations.
Here,n is the number of receivers and(i, j) is an enumera-
tion of all K pair of receivers, where

K =
(

n
2

)
(3)

Each∆di,j corresponds to positions(x, y) along a hyper-
bola.

Assume first that the receivers are both located at the
x-axis atx = D/2 andx = −D/2, respectively. The hy-
perbolic function can then be expressed as

d2 =
√

y2 + (x + D/2)2, (4a)

d1 = −
√

y2 + (x − D/2)2, (4b)

∆d = d2 − d1 = h(x, y, D) (4c)

=
√

y2 + (x + D/2)2 −
√

y2 + (x − D)/2)2. (4d)

After some simplifications, this equation can be rewritten in
a more compact form as

x2

a
− y2

b
=

x2

∆d2/4
− y2

D2/4 − ∆d2/4
= 1. (5)

The solution to this equation has asymptotes along the lines

y = ± b

a
x = ±

√
D2/4 − ∆d2/4

∆d2/4
x. (6)

which defines the angle of arrival for far-away transmitters.
Figure 1 illustrates the hyperbolic function in the local co-
ordinate system(x, y).
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Noisy TDOA using two receivers

Fig. 2. Same as Figure 1, but with measurement uncertainty
in ∆d.

For a general receiver position, we simply translate the
hyperbolic function (5) in local coordinates(x, y) to global
coordinates(X, Y ) using(

X
Y

)
=

(
X0

Y0

)
+

(
cos(α) − sin(α)
sin(α) cos(α)

) (
x
y

)
(7)

whereX0 = (Xi + Xj)/2, Y0 = (Yi + Yj)/2 locates the
center point of the receiver pair. The hyperbolic function in
global coordinates is thus given by∆di,j = h(x, y, D) in
(5), with

D =
√

(Yi − Yj)2 + (Xi − Xj)2 (8a)(
x
y

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

) (
X − X0

Y − Y0

)
(8b)

α = arctan
(

Yi − Yj

Xi − Xj

)
(8c)

We have now a functional form suitable for representing the
measurement uncertainty in TDOA, which implies an un-
certain hyperbolic area rather than a line. This is illustrated
in Figure 2. The farther away along the asymptotes, the
larger absolute uncertainty in position.

3. THE NON-LINEAR LEAST SQUARES
PROBLEM

The general problem is to solve the (possibly over-determined)
non-linear system ofK equations

∆di,j = h(X, Y ; Xi, Yi, Xj, Yj), 1 ≤ i < j ≤ n (9)

for the sender position(X, Y ), given the receiver positions
(Xi, Yi). Now, the non-linear least squares estimate of(X, Y )
is given by

(X̂, Ŷ ) = arg min
(X,Y )

∑
i>j

(∆di,j − h(X, Y ; Xi, Yi, Xj , Yj))2
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To simplify notation, we useP = (X, Y ) for the position.
Then, rewrite the minimization problem in vector notation
using aweighted least sqauares criterion

P̂ = = argmin
P

(∆d − h(P ))T R−1(∆d − h(P )) (10)

where∆d = (∆d1,2, . . .∆dn−1,n)T andR = Cov(∆d) is
the covariance matrix for the TDOA measurements. The so-
lution defines the minimum variance estimate. For a Gaus-
sian assumption on the TDOA noise, this coincides with the
maximum likelihood estimate.

Using the assumption that∆d = h(P0) + e, whereP0

is the true position and the TDOA noise hasCov(e) = R,
a first order Taylor expansion around the true value gives
h(P ) ≈ h(P0)+h′

P (P0)(P −P0). The least squares theory
now gives

Cov(P̂ ) = (h′
P (P0))†R((h′

P (P0))†)T , (11)

provided thatP̂ is sufficiently close to the true position (high
SNR). For Gaussian noisee, this expression also defines the
Cramér-Rao lower bound. That is, no estimator can per-
form better than this bound, given that we have find a small
enough neighborhood of the true position. From (11), we
can obtain guidelines for what a favourableP0 is, or for
electronic warfare how to place the receivers in the best pos-
sible way.

4. ALGORITHMS

Three different approaches have been compared:

1. Compute the intersection point of each pair of hyper-
bolic functions. There are

(
K
2

)
=




(
n
2

)
2


 (12)

pair of hyperbolic functions. The position estimate
can then be the (weighted) average of these points.
Since each pair can have no, one or two intersections,
the logic to find the correct one is non-trivial. Further,
it is a bit complicated to find the correct weighting.

2. Applying the stochastic gradient algorithm to the non-
linear least squares problem.

3. Numerical approximation of the non-linear least squares
problem using Monte Carlo based techniques. This is
refered to as the particle filter (PF), which is a static
version of the general approach described in [8].

The first approach has shown to give inferior results than the
other two. The latter two ones are described below.

The normalized gradient algorithm can be written as fol-
lows:

Algorithm 1 (Stochastic gradient algorithm)

P (m+1) = P (m) − µ(m)h′
P (P (m))(∆d − h(P (m))) (13)

A good step size can be computed by bisection techniques,
line search or, as in the simulations, as the normalized LMS
step size

µ(m) =
µ

(h′
P (P (m)))T h′

P (P (m))
(14)

The particle filter is a static version of the well-known
SIR algorithm [9, 10].

Algorithm 2 (Static particle filter) .

1. Randomize N ’particles’ (here possible positions) P i.

2. Choose jittering constants CR and CQ and let the po-
sition random walk covariance Q̄ = CQ/k2 and jit-
tering measurement noise R̄ = R+CR/k2. The idea
with jittering noise is to explore a smaller and smaller
neighborhood more and more accurately.

3. Iterate for k = 1, 2, . . . until P̂ (k) has converged.

(a) Compute the particle weights wi using the like-
lihood

wi = exp
(
(∆d − h(P i))T R−1(∆d − h(P i))

)
and normalize wi = wi/(

∑
wi).

(b) Compute the estimate P̂ (k) =
∑

i wiP i.

(c) Resample with replacement the particles, where
the probability to pick one particle is propor-
tional to its weight. After the resampling, the
weigths are reset wi = 1/N .

(d) Spread out the particles as P i = P i +w, where
w ∈ N(0, Q̄).

The resampling step is the key to get a working algorithm.
In the standard particle filter,k denotes time and there is a
time update step where the particles are moved according to
a velocity measurement and a movement noisew, otherwise
the algorithms are quite similar. Compare to the particle
filters in [7, 8].

5. SIMULATIONS

Figure 3(a) illustrates the test scenario, with four receivers
computing in total six TDOA measurements.

Figure 3(b) shows what happens to the hyperbolic func-
tions when Gaussian measurement noise (standard devia-
tion of 0.1 scale units) is added to the TDOA measurements.
That is, there is no clear cut intersection point. To under-
stand the non-linear least squares criterion, the level curves
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Fig. 3. (a) Test scenario: four receivers are placed in a square, and six resulting hyperbolic functions from noise-free TDOA:s
intersect at the transmitter position. Also shown is the particle cloud and the resulting position estimate using Algorithm 1. (b)
Same as (a), but the hyperbolic functions are computed from six different noisy TDOA vectors. This illustrates that in general
there is no unique intersection of all six lines. (c) Contour plot of non-linear least squares criterion

∑
i<j(∆di,j −h(X, Y ))2.

In this sceario, there is no local minima and a gradient algorithm will converge from any initialization. (d) Gradient search
using a normalized least mean square method on Algorithm 2 (compare the path to the contour plot in (c)).

of (10) are plotted in Figure 2(c). This plot explains how
the weights of the particles are computed, and in which di-
rection the gradient in LMS points.

Figure 3(a) shows the particle cloud after a few itera-
tions. As might be expected from the level curves, this cloud
is often found beyond the true position, as in this example.
However, in most cases the true position is found. Figure
3(d), finally, shows the learning path of LMS. For this sce-
nario which lacks local minima, LMS is to prefer.

6. CONCLUSIONS

Two algorithms have been suggested for finding the position
of a transmitter, given TDOA measurements computed from
the received signal for at least three receivers. A non-linear
least squares approach was advocated, enabling local anal-
ysis yielding a position covariance and a Cram´er-Rao lower
bound. A simulation study illustrated the TDOA problem
in general and the performance of the two suggested algo-
rithms. On-going work aims at investigating the practical
performance for acoustic communication, how to use the
Cramér-Rao bound to determine receiver locations and use
Monte-Carlo simulations to examine the performance of the
two algorithms.
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