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ABSTRACT

Among the challenging issues that affect the performance of wire-
less location techniques is the temporal and spatial variations of
the channel, and the distribution of the scatterers, which introduce
non-line-of sight errors at the base station. This paper develops a
technique for addressing this problem by exploiting the topology
of the cellular network.

1. INTRODUCTION

The U.S. Federal Communications Commission (FCC) has made
E911 a mandatary requirement for wireless communications ser-
vices [1]. E911 requires all 911 calls from mobile telephones in the
U.S. to be located within certain accuracy in order to route calls to
the appropriate emergency service provider. Besides emergency
assistance, this service will trigger many location-based services
within the wireless network. One of the difficulties that affects
the performance of location techniques is the temporal and spatial
variations of the channel, and the distribution of scatterers, which
introduce non-line-of-sight errors at the BSs. This paper presents
an algorithm for equalizing the NLOS problem by using a con-
strained optimization formulation that exploits the topology of the
cellular network. We assume we have measured the time-of-arrival
(TOA) and the angle-of-arrival (AOA) of the mobile station (MS)
at the base station (BS) using some known algorithms (e.g., [2, 3]).
We then use the information from several BSs, and a data fusion
scheme, to equalize these noisy measurements and to arrive at an
improved location estimate.

2. PROBLEM FORMULATION

Fig. 1 shows a representation of a cellular system assuming four
BSs. In the figure, we define the cellular system features as fol-
lows:

•
�
xm
ym

�
: mobile location.

•
�
xi
yi

�
: ith base station location.

• ri: the distance from the MS to theith BS.

• αi: the angle of arrival from the MS to theith BS.

• θi: angles due to the BSs topology.

• dij : the distance betweenith andjth BSs.

• ti: the time of arrival of the MS signal at theith BS.

• tm: the time of transmitting the signal from the MS.
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Fig. 1. A schematic of a cellular network topology with four BSs.

The location of a mobile station can be determined from knowl-
edge of these features. For instance, we know thatri = (ti −
tm)C, whereC is the speed of light (3× 108m/s) and, moreover,

r2
i = (xi − xm)2 + (yi − ym)2

If we take the first BS as the origin of the coordinate system (i.e., if
we setx1 = y1 = 0), then the location of the MS can be estimated
via the least-squares solution:�

xm
ym

�
= (HTH)−1HTb (1)

where
H =

0@x2 y2
x3 y3

...
...

xn yn
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1

2
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1
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i = x2
i + y2

i

In practice, we only have access to noisy measurements of{ri, αi},
say Ri = ri + Nri , φi = αi + Nαi (2)

The noises{Nri , Nαi} consist generally of two components each:
a line-of-sight (LOS) term that arises from measurement noise, and
a non-line-of-sight term that arises from the temporal and spatial
variations of the channel, and the distribution of scatterers. We
shall therefore write
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Nri = LOSr + NLOSr (3)

Nαi = LOSα + NLOSα

and we will comment on the distribution of these noises in Secs. 4
and 5. Our scheme for enhanced location accuracy will be based
on formulating a constrained optimization problem that reduces
the effect of noises on location accuracy. The constraints will be
a reflection of the topology of the cellular network. Thus consider
again the cellular system shown in Fig. 1. The constraints are the
distances between the BSs, which are given by

d2
12 = r2

1 + r2
2 − 2r1r2 cos(γ1) (4)

...

d2
41 = r2

4 + r2
1 − 2r4r1 cos(γ4)

and, for the cross nodes,
d2
13 = r2

1 + r2
3 − 2r1r3 cos(γ1 + γ2) (5)

d2
24 = r2

2 + r2
4 − 2r4r4 cos(γ3 + γ4)

where theγ’s are functions of theα’s andθ’s. This formulation
is easily extendable to the case ofn BSs. Then we can pose the
problem of estimating the noises{Nri , Nαi} by solving

N̂ = arg min
N

nX
i=1

�
Nri

σri

�2

+

�
Nαi

σαi

�2

(6)

subject to

d2
12 = (R1 −Nr1)

2 + (R2 −Nr2)
2 −

2(R1 −Nr1)(R2 −Nr2)

cos(π − (φ1 −Nα1 + (θ2 − (φ2 −Nα2))))

...

d2
13 = (R1 −Nr1)

2 + (R3 −Nr3)
2 −

2(R1 −Nr1)(R3 −Nr3)

cos((φ1 −Nα1 + (θ2 − (φ2 −Nα2))) +

(φ2 −Nα2 + (θ3 − (φ3 −Nα3))))

...

whereN = (Nr1 , Nr2 , · · · , Nrn , Nα1 , Nα2 , · · · , Nαn)T is a
vector of length2n, σ2

ri
is the variance of the distance error and

σ2
αi

is the variance of the angle error (both at theith BS). If we con-
siderNri andNαi as Gaussian noises, then (6) is the maximum-
likelihood estimation ofNri and Nαi . There are some known
methods for calculating the variancesσ2

ri
andσ2

αi
(see, e.g. [5, 6,

7]). These methods usually use the time history of errors, or the
scattering model of the environment, to estimate the standard de-
viations. Specifically, the methods assume that the noises change
faster than the MS distance from the BSs, so that the{ri, αi} in (2)
can be assumed to be constants during estimation. The variance of
the noises is then the same as the variances of the measurementsRi

andφi. So assume we collectK measurements (sayK ≈ 400).
Then, from [5],

σ2
ri
≈ 1

K

K−1X
n=0

(Ri(n)− µri)
2, where µri =

1

K

K−1X
n=0

Ri(n)

Likewise forσ2
αi

. Minimizing (6) results in estimates of distance
and angle noises, which in turn lead to estimates for{ri, αi} as

r̂i = Ri − N̂ri , α̂i = φi − N̂αi (7)

Using these equalized values in (1), will result in improved loca-
tion accuracy.

3. OPTIMIZATION METHOD

For the solution of the constrained optimization problem (6), there
are several well developed numerical algorithms. We shall use the
SQP (Sequential Quadratic Programming) method [9], which es-
sentially reduces a nonlinear optimization problem with nonlinear
constraints to a sequence of constrained least-squares problems.
The implementation consists of three main steps:

• Updating the Hessian matrix of the Lagrangian function.
• Solving a constrained least-squares problem.
• Line search and merit function calculation.

More specifically, using (6), we can denote the objective function
and the constraints as:

f(N) : objective function in (6).

gi(N) = 0 : constraints in (6), say fori = 1, · · · , me.

N = (Nr1 , Nr2 , · · · , Nrn , Nα1 , Nα2 , · · · , Nαn)

The associated Lagrangian function is

L(N, λ) = f(N) +

meX
i=1

λigi(N)

The solution is determined iteratively as

Nk+1 = Nk + µkdk

wheredk is the search direction that is obtained by solving the
constrained least-squares problem:

min
d∈<n

1

2
dT Hkd +∇f(Nk)T d

s.t.∇gi(Nk)T d + gi(Nk) = 0 i = 1, ...., me

where Hk = ∇2
NL(N, λ)|N=Nk

or, equivalently,

min
d∈<n

1

2
dT Hd + cT d

s.t. aid = bi i = 1, ..., me

whereai = ∇gi(Nk)T , bi = −gi(Nk) and c = ∇f(Nk)T .
The solutiondk is be obtained from solving the linear system of
equations: �

H AT

A 0

��
d
λ

�
=
�
−c
b

�
(8)

whereb is a vector containing the{bi} andA is a matrix of the
{ai}. The step sizeµk is chosen in a way that causes sufficient
decrease in a merit function. There exist many different forms of
merit functions, e.g.,ϕ(N) = f(N) +

Pme
i=1 g2

i (N).

do

UpdateHk

dk = arg mind{ 1
2
dT Hkd +∇f(Nk)T d :

∇gi(Nk)T d + gi(Nk) = 0 i = 1, · · · , me}
µk=linesearch(ϕ(Nk, λk), dk)

Nk+1 = Nk + µkdk

k = k + 1

until convergence

return (Nk, λk)

We have used the Matlab optimization toolbox for solving (6).
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4. TOA ERROR DISTRIBUTION

We now comment on the distribution of the LOS and NLOS er-
rors. The LOS error in distance measurements is modelled as zero
mean Gaussian distribution with standard deviation between 30
and 60 meters. The NLOS error distribution can be deduced from
the probability density function of the propagation delay between
direct path and other paths. An exponential model has been inves-
tigated in [10],

P (τ) =

(
1

τrms
e
− τ

τrms τ > 0

0 otherwise
(9)

whereτ is the NLOS delay,τrms is the rms delay spread, which
has a lognormal distribution and depends on the environment pa-
rameters. Using the model in [11],τrms = T1d

ερ, whereT1 is
the median value of the rms delay spread at one kilometer,d is
the distance between the MS and the BS,ε is the path loss expo-
nent (PLE) with value between 0.5 and 1,ρ is a lognormal variable
(such that10 log ρ is a zero mean Gaussin variable with standard
deviationσρ that lies between 4-6 dB). Typical parameters for dif-
ferent type of environments are given in the following table:

Enviroment T1(µs) ε σρ(dB)
Bad Urban 1.0 0.5 4

Urban 0.4 0.5 4
Suburban 0.3 0.5 4

Rural 0.1 0.5 4

5. AOA ERROR DISTRIBUTION

The LOS error in AOA measurement can be modelled as zero
mean Gaussian with standard deviation of approximately 3 de-
grees. The NLOS AOA error can be considered as a zero mean
Gaussian random variable with standard deviation 5-10 degrees
for different environments. An estimate for this standard deviation
is given in [12] asσα = Cτ

d
, whereC is speed of light,d is the

distance between the MS and the BS, andτ is the TOA delay in
(9).

6. SIMULATION RESULTS

For the simulation environment we consider four BSs, with 1 Km
distance between them. We assume we have the measurements
of AOA and TOA. For NLOS BSs, we add TOA noise according
to (9) and a Gaussin noise with standard deviation of 45 meters
as the LOS error. For AOA error of the NLOS BSs, we use a
zero mean Gaussian noise with standard deviation given in Sec. 5,
and a zero mean Gaussian noise with standard deviation 3 degrees.
We consider the cases with 4 out of 4 NLOS BSs and 3 out of 4
NLOS BSs. To get the average over estimation errors, we choose
400 uniform random points in the plane and simulate 150 differ-
ent NLOS and LOS noises for each point. The figures show the
comparison between our equalization method, a traditional equal-
ization scheme from [4], and using measured data without any
equalization. The scheme from [4] uses the noisy measurements
Ri to estimate the MS location by solving

�
x̂m
ŷm

�
= arg min�

x
y

� nX
i=1

0@Ri −



�xy�− �xi

yi

�



σri

1A2

(10)
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Fig. 2. block-diagram representation
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Fig. 3. The CDF of location error for NLOS noise models given in
Secs.4 and 5 when there is 1 LOS BS and 3 NLOS BSs.

where‖ . ‖ denotes the Euclidean norm andσri is the standard
deviation of the distance error at theith BS. To initialize our sim-
ulation we find the MS location using raw data and (1), then we
use the mobile location to initialize the least-squares equation us-
ing (10), and then use the obtained location to initialize the con-
strained optimization (6). We have also simulated some bad situa-
tions when the NLOS error is more than the assumed models (e.g.,
when the MS is inside a building). To model this error, we con-
sider the given models in Secs. 4 and 5, but we amplify the AOA
and TOA noises 3.3 more than before.

7. SUMMARY

As shown in the figures, the performance of the proposed con-
strained equalization scheme is superior to other schemes, espe-
cially in bad urban environments with higher NLOS noises. It also
performs well in LOS situations, but we see dramatic performance
improvement in NLOS cases.
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Fig. 4. The CDF of location error for three times higher than
NLOS noise model given in Secs.4 and 5 when there is no LOS
BS.

1
2

3

1
2

3
4

0

200

400

600

Method

67% accuracy for 3 NLOS BSs and 1 LOS BS

Env

M
et

er

1
2

3

1
2

3
4

0

500

1000

1500

Method

95% accuracy for 3 NLOS BSs and 1 LOS BS

Env

M
et

er

1
2

3

1
2

3
4

0

200

400

600

Method

67% accuracy for 4 NLOS BSs and no LOS BS

Env

M
et

er

1
2

3

1
2

3
4

0

500

1000

1500

Method

95% accuracy for 4 NLOS BSs and no LOS BS

Env

M
et

er

equalization
equation (10)
raw data

Fig. 5. 0.67 and 0.95 threshold point in location error for NLOS
noise model given in Secs. 4 and 5. Methods from 3 to 1 are using
raw data, using equation (10) and using constrained equalization.
The environments 1-4 correspond to Bad Urban, Urban, Suburban
and Rural.
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Fig. 6. 0.67 and 0.95 threshold point in location error for three
times more than NLOS noise model given in Secs. 4 and 5. Meth-
ods from 3 to 1 are using raw data, using equation (10) and using
constrained equalization. The environments 1-4 correspond to Bad
Urban, Urban, Suburban and Rural.
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