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ABSTRACT

Among the challenging issues that affect the performance of wire:
less location techniques is the temporal and spatial variations ¢
the channel, and the distribution of the scatterers, which introduct
non-line-of sight errors at the base station. This paper develops
technique for addressing this problem by exploiting the topology
of the cellular network.

1. INTRODUCTION

The U.S. Federal Communications Commission (FCC) has mad
E911 a mandatary requirement for wireless communications set
vices [1]. E911 requires all 911 calls from mobile telephones in the
U.S. to be located within certain accuracy in order to route calls to
the appropriate emergency service provider. Besides emergenc
assistance, this service will trigger many location-based service
within the wireless network. One of the difficulties that affects
the performance of location techniques is the temporal and spatial
variations of the channel, and the distribution of scatterers, which
introduce non-line-of-sight errors at the BSs. This paper presents
an algorithm for equalizing the NLOS problem by using a con- . . . .
strained optimization formulation that exploits the topology of the The location of a mobile station can be determined from knowl-
cellular network. We assume we have measured the time-of-arrival€949€ Of these features. For instance, V;’e know that (t; —
(TOA) and the angle-of-arrival (AOA) of the mobile station (MS) tm)C whereC'is the speed of light{ x 10°m/s) and, moreover,

at the base station (BS) using some known algorithms (e.qg., [2, 3]).
We then use the information from several BSs, and a data fusion

scheme, to equalize these noisy measurements and to arrive at aff we take the first BS as the origin of the coordinate system (i.e., if

Fig. 1. A schematic of a cellular network topology with four BSs.

Tiz = (-Tz - xm)z + (yz - y7n)2

improved location estimate. we setr; = y; = 0), then the location of the MS can be estimated
via the least-squares solution:
2. PROBLEM FORMULATION (zgjﬁ) — (HTH)'H™b N
Fig. 1 shows a representation of a cellular system assuming fourWhere To Yo K% — 343
BSs. In the figure, we define the cellular system features as fol- T3 Y3 1| K5 —r5+ri
lows: H = : o ]b=3 :
x . . Tn  Yn K2 _ 2 2
e (3™ ):mobile location. n—Tn +T1
(ym> 2 2 2
K; = ity

@j) :ith base station location. . .
In practice, we only have access to noisy measurements ak; },

e r;:the distance from the MS to thith BS. say Ri=r7i+ N, ¢i=ci+ Na, )
* a:ithe angle of arrival from the MS to thién BS. The noise{ N,,, N, } consist generally of two components each:

e 0;:angles due to the BSs topology. a line-of-sight (LOS) term that arises from measurement noise, and
a non-line-of-sight term that arises from the temporal and spatial
variations of the channel, and the distribution of scatterers. We
e ¢;:the time of arrival of the MS signal at thi¢h BS. shall therefore write

e d;;:the distance betweeith andjth BSs.

e t,,:the time of transmitting the signal from the MS. *This work was supported in part by NSF grant CCR-0208573.

0-7803-7663-3/03/$17.00 ©2003 IEEE VI - 549 ICASSP 2003




N,, = LOS,+ NLOS, 3) 3. OPTIMIZATION METHOD
No, = LOSa+ NLOS. For the solution of the constrained optimization problem (6), there
and we will comment on the distribution of these noises in Secs. 4 are several well developed numerical algorithms. We shall use the
and 5. Our scheme for enhanced location accuracy will be basedSQP (Sequential Quadratic Programming) method [9], which es-
on formulating a constrained optimization problem that reduces sentially reduces a nonlinear optimization problem with nonlinear
the effect of noises on location accuracy. The constraints will be constraints to a sequence of constrained least-squares problems.
a reflection of the topology of the cellular network. Thus consider The implementation consists of three main steps:

again the cellular system shown in Fig. 1. The constraints are the o ypdating the Hessian matrix of the Lagrangian function.
distances between the BSs, which are given by e Solving a constrained least-squares problem.

di; = ri+75—2riracos(v1) 4) e Line search and merit function calculation.

More specifically, using (6), we can denote the objective function
and the constraints as:

&2, = g2 2 _9
41 ri 47— 2rar cos(v) F(N) : objective function in (6).
and, for the cross nodes, _ — ints i T
By = 12 12— %y cos(yi + 72) ®) gi(IN) _1\(1) (;:])nst;\?lnts in ((]33, saj;\/rforz]\7 1, ,]rvne.
dsy = 15 +715 — 2rarscos(ys + 4) = (Nry,Nryy o s Niyy, Ny, Nag, -+ Nay)
where they’s are functions of they's andé’s. This formulation The associated Lagrangian fung@t:pn 1S
is easily extendable to the caseroBSs. Then we can pose the L(N,A) = f(N) + Z Aigi(IN)
problem of estimating the noisgsV,.,, N, } by solving i=1
) "N\ 2 N \2 The solution is determined iteratively as
N = arg minz ERLL R PRI (it (6)
N 4\ op; Oa; N1 = Ng + prds
subject to whered;. is the search direction that is obtained by solving the
d? = (Ri—Ny)?+ (R2—Ny)%— constrained least-squares problem:
2(R1 — Nr,)(Ra — Ny,) min %dTde FVFNGTd
cos(m — (¢1 = Nay + (02 — (¢2 — Nay)))) aen -
s.t. VgZ(Nk) d—&-gl(Nk) = 0 2=1,....,me
: where Hy = VAL(N,)\)|n=n,
2 _ 2 2
dis = (B1—Np)"+ (Rs— Npy)” — or, equivalently,
2(R1 = Niy)(Rs — Nrg) min %dTHd-l-ch
cos((¢p1 — Nay + (02 — (p2 — Nay))) + deR )
s.t. aid=b; 1=1,....mc
(¢2 — Nay + (03 — (¢3 — Nay)))
wherea; = Vgi(Nk)T, b, = *gi(Nk) andc = Vf(Nk)T
The solutiondy, is be obtained from solving the linear system of

. equations:
whereN = (N,;, Ny, -+ ,Ni, Noy, Naw, -, Na, )T is a q

vector of length2n, o7, is the variance of the distance error and (IZ AOT) (i) - (—bc) @8)
ail is the variance of the angle error (both atitfeBS). If we con-

sider N, and N,,, as Gaussian noises, then (6) is the maximum- whereb is a vector containing th¢b;} and A is a matrix of the
likelihood estimation ofN,, and N,,. There are some known {a:}. The step size: is chosen in a way that causes sufficient
methods for calculating the varianoe,%i andaii (see, e.g. [5, 6, decrease in a merit function. There exist many different forms of
7]). These methods usually use the time history of errors, or the merit functions, e.gp(N) = f(N) + 31" ¢7(N).
scattering model of the environment, to estimate the standard de-

viations. Specifically, the methods assume that the noises change do

faster than the MS distance from the BSs, so thaf{thex; } in (2) UpdateH

can be assumed to be constants during estimation. The variance of
the noises is then the same as the variances of the measurdtents di = argming{3d" Hrd + V f(N)"d :
and¢;. So assume we colleét measurements (say ~ 400). Vi (N Td+ gi(Ne) = 0 i =1, ,me}

Then, from [5],
i pr=linesearchy(Ny, Ar), d,)
Niy1 = Ni + prdi

K-—1
2 1 2 _ 1
Op;, =~ ? (Rl (n) - :u’7‘7) ) where Hr; = ? ; Rl (TL)

n=0
Likewise foraii. Minimizing (6) results in estimates of distance k=k+1
and angle noises, which in turn lead to estimate{foro; } as until convergence

return (N, Ax)

Using these equalized values in (1), will result in improved loca-
tion accuracy. We have used the Matlab optimization toolbox for solving (6).
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4. TOA ERROR DISTRIBUTION

We now comment on the distribution of the LOS and NLOS er-
rors. The LOS error in distance measurements is modelled as zel

b A

mean Gaussian distribution with standard deviation between 3(
and 60 meters. The NLOS error distribution can be deduced fron
the probability density function of the propagation delay between
direct path and other paths. An exponential model has been inves
tigated in [10],

P(r) —{

wherer is the NLOS delay7,s is the rms delay spread, which

1
Trms

0

T>0
otherwise

_—
e Trms

9)

has a lognormal distribution and depends on the environment pe
rameters. Using the model in [114,,,s = Tid‘p, whereT; is

the median value of the rms delay spread at one kilomdtés,
the distance between the MS and the B® the path loss expo-
nent (PLE) with value between 0.5 andplis a lognormal variable
(such thatlOlog p is a zero mean Gaussin variable with standard
deviationo, that lies between 4-6 dB). Typical parameters for dif-
ferent type of environments are given in the following table:

Enviroment| Ti(us) | e [ 0,(dB)
Bad Urban 1.0 05 4
Urban 0.4 0.5 4
Suburban 0.3 0.5 4
Rural 0.1 0.5 4

5. AOA ERROR DISTRIBUTION

The LOS error in AOA measurement can be modelled as zero
mean Gaussian with standard deviation of approximately 3 de-

grees. The NLOS AOA error can be considered as a zero mean
Gaussian random variable with standard deviation 5-10 degrees § 05
for different environments. An estimate for this standard deviation *

is given in [12] aso, = %, whereC' is speed of lightd is the
distance between the MS and the BS, and the TOA delay in
(9).

6. SIMULATION RESULTS

For the simulation environment we consider four BSs, with 1 Km

(/@‘\<>

:

i
! ﬂKeep a history of TOAH Estimate variance
i and AOA of angle and distance Emergency center
i
[ {Keep a history of TOA] Estimate variance LSC
and AOA of angle and distance Running Optimization
_ _|Keep a history of TOA Estimate variance @ ggg E;ﬁp&;ﬁgjﬁe S
and AOA of angle and distance
e %Keep a history of TOAF‘ Estimate variance Other applications
and AOA of angle and distance

Fig. 2. block-diagram representation
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Fig. 3. The CDF of location error for NLOS noise models given in
Secs.4 and 5 when there is 1 LOS BS and 3 NLOS BSs.

distance between them. We assume we have the measurements

of AOA and TOA. For NLOS BSs, we add TOA noise according

to (9) and a Gaussin noise with standard deviation of 45 meters

as the LOS error. For AOA error of the NLOS BSs, we use a

zero mean Gaussian noise with standard deviation given in Sec. séng (10), and then use the obtained location to initialize the con-

and a zero mean Gaussian noise with standard deviation 3 degree
We consider the cases with 4 out of 4 NLOS BSs and 3 out of 4
NLOS BSs. To get the average over estimation errors, we choos
400 uniform random points in the plane and simulate 150 differ-
ent NLOS and LOS noises for each point. The figures show the

comparison between our equalization method, a traditional equal-

ization scheme from [4], and using measured data without any

equalization. The scheme from [4] uses the noisy measurements

R; to estimate the MS location by solving

- (n 1) - G

i

(10

e

Where|| . || denotes the Euclidean norm aad, is the standard
deviation of the distance error at thia BS. To initialize our sim-
ulation we find the MS location using raw data and (1), then we
use the mobile location to initialize the least-squares equation us-

strained optimization (6). We have also simulated some bad situa-
tions when the NLOS error is more than the assumed models (e.g.,
when the MS is inside a building). To model this error, we con-
sider the given models in Secs. 4 and 5, but we amplify the AOA
and TOA noises 3.3 more than before.

7. SUMMARY

As shown in the figures, the performance of the proposed con-
strained equalization scheme is superior to other schemes, espe-
cially in bad urban environments with higher NLOS noises. It also
performs well in LOS situations, but we see dramatic performance
improvement in NLOS cases.
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