PERFORMANCE ANALYSIS OF MEASUREMENT ERROR REGRESSION IN
DIRECT-DETECTION LASER RADAR IMAGING

Christina Gronwall, Tomas Carlsson

Swedish Defence Research Agency (FOI)
Department of Laser Systems
P.O. Box 1165, SE-581 11 Linkoping, Sweden
christina.gronwall,tomas.carlsson@foi.se

ABSTRACT

In this paper a tool for synthetic generation of scan-
ning laser radar data is described and its performance
is evaluated. By analyzing data from the system, we
will recognize objects on ground. In the measurement
system it is possible to add several design parameters,
which make it possible to test an estimation scheme
under different types of system design. The measure-
ment system model includes laser characteristics, ob-
ject geometry, reflection, speckles, atmospheric atten-
uation, turbulence and a direct detection receiver. A
parametric method that estimates an object’s size and
orientation is described. There are measurement errors
present and thus, the parameter estimation is based on
a measurement error model. The parameter estimation
accuracy is limited by the Cramer-Rao lower bound.
Validations of both the measurement error model and
the measurement system are shown. Data from both
models generate parameter estimates that are close to
the Cramer-Rao lower bound.

1. INTRODUCTION

1.1. The laser radar system

Laser radar systems have been investigated over sev-
eral decades primarily for military applications, see for
example [1]. As in microwave radar technology, the
range of the object and background is often obtained
by measuring the time of flight for a modulated laser
beam from the transmitter to the object and back to
the receiver. The high resolution makes 3D imaging
possible and due to the short wavelength, in general
0.5-10 wm, detailed range images of objects and back-
ground can be obtained.

In this paper we will study the properties of data
from a helicopter-carried, scanning laser radar system.
The laser beam is swept from side to side and when the
helicopter flies this results in a zigzag-shaped scanning
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Fig. 1. Typical scanning pattern for a helicopter-
carried scanning laser radar system.

pattern, see Fig. 1. The laser radar system is con-
nected to a GPS and the laser samples are fused with
the GPS coordinates. Each sample data point contains
(z,y,2,1), where (z,y) is the position in north-south
and east-west, respectively, z is the altitude, and I is
the intensity in the returning pulse. This means that
the set of data/image points corresponds to a 3D map-
ping of the terrain. An example of data from a scanning
laser radar system is shown in Fig. 2. The scanning is
usually performed in another direction than (x,y). Let
us call the direction of the scanning £ and the flight
direction of the helicopter 7. Thus, the data collection
is performed in the coordinate system (&, 7).

1.2. Object recognition

In [2] methods for estimation of object’s size and ori-
entation from scanning laser radar data are proposed.
The work is based on the assumption that from a top
view most vehicles are approximately of rectangular
shape. When the object is detected a rectangle that
with minimal area contains the convex hull of the ob-
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Fig. 2. Example of (raw) data from a helicopter-
carried scanning laser radar system. The arrow marks
a vehicle placed in an opening of the forest. The folded
image shows the rectangle estimation process. *, x: ob-
ject and ground data, respectively, solid: the minimum
rectangle estimate and dashed: TLS estimate. (Data is
from the TopEye system, see http://www.topeye.com.)

ject’s data is estimated. This rectangle estimate is
then improved using least squares methods based on
both object and ground data. Both linear (total least
squares, TLS, see e.g. [3]) and nonlinear least squares
methods (Newton-type) were evaluated. These im-
proved rectangle estimates are less biased compared
to the initial estimates. An example of the method
is shown in Fig. 2.

In this paper we will study the estimation properties
of the TLS formulation, in terms of correctness in pa-
rameter estimates. In the rectangle estimation method
described above the analysis was performed in the (£, )
dimension. Below we will study a simplified problem;
estimation of a slope instead of a rectangle, and in the
(§,2) dimension. In Section 2 the system, the mea-
surement error (ME) model and the Cramer-Rao lower
bound (CRLB) of the ME model are described. In Sec-
tion 3 both the estimation model and the measurement
system are validated. Finally, in Section 4 conclusions
are found.

2. THE MEASUREMENT ERROR MODEL

2.1. System description
Let us define a regressor
T
Y= (5; m, Z)

b

which contains data used for the size and orientation
estimation. The regressor ¢ is a function of the mea-

surement system

o=Ff (Ta Ascany apitch) )

where 7 is the slant range distance measured by the
laser range finder in a certain scan angle, ®scqn, and
pitch angle, apitcn. Qscan is considered parallel with
& and apgicn is considered parallel with 7. Implicitly,
@ is also a function of the object’s shape, atmosphere,
receiver, detector properties etc.

Gauss approximation formula gives that the covari-
ance of the regressor can be approximated using a first
order Taylor expansion by

R=Cov(p) = f'Cov ((7", Ozscan,apitch)T> (O£,
(1)

where f’ and f” are the first and second order deriv-
ative in 7, Qgeqn and Qpitcn, respectively, and O is the
ordo operator.

2.2. The slope model

Let us derive a model for one scan over a slope (i.e., a
tilted plane) in the (¢, z) dimension. As only one scan
is studied, the n axis is constant and can be ignored.
Note that the regressor now is redefined to ¢ = (£, z)T.
In each sample m we retrieve

Em N _ (& I
= 0

Zm z €z
_ 0 9
@m =@ + eiP’ ( )
where ¢, is the measured coordinate, ¢° is the unob-
servable, true coordinate and e, is the noise in (¢, 2),
respectively. Note that we have error in both coordi-
nates and thus, we have a measurement error (ME)

regression problem. For the estimation of a slope we
use the following equation for a straight line

oNT
¥ _
( ° ) 60,
where the parameters are
0 = (017 027 93)T

with the constraint

g(0) =07 +05-1=0

or

to guarantee a unique solution. The covariance matrix
T T .
of (¢f, 1) is

_ em \_( R O
S=Cov < 1 > = < 0 0 ) .
The (total) model error can now be defined as

e=(eh-(0)" 1)0
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2.3. Pre-whitening of the ME model

The errors in the TLS estimates have minimum vari-
ance when the error covariance matrix is proportional
to the identity matrix, i.e., R ~ I. If this is not the
case, as in this example, the error covariance matrix
R must be scaled. When R is a symmetric, positive
definite matrix the regressor and parameter vector can
be scaled as

Cm = R_290m7
1

(01,0,)" = R7%(61,6,)" .

This gives a new estimation problem with

(f)Ta:o

g(0) =1,

subject to

where
R=Cov(p)=1.

The TLS will now give minimum variance estimates of

6, and the estimates in the "true” coordinates can be
. 14
retrieved from 0 = Rz6.

2.4. The Cramer-Rao lower bound of the ME
model

It is always desirable to understand how a particular
estimation scheme performs under a certain model. If
we assume some distribution of the perturbations, a
lower bound on the error covariance of the estimated
parameters can be calculated by the Cramer-Rao lower
bound (CRLB).

Consider the measurement error model (2) and as-
sume that e and e, are Gaussian distributed with zero
mean and variance o2, and ¢2_, respectively. Further,
e¢ and e, are assumed to be independent. The CRLB
states that the quality of any estimator in terms of its
mean-square error (MSE) is bounded from below as

B((e-0)(-0)") 2

where J is the Fisher information matrix. Inserting
0= R%H, we get the CRLB expression

((#-9) (" -9) )z ntsm =i

Following the calculations in [4] for J~! we get the

following expression of CRLB

Var (5(1) — 51) =

==
S|~

2
E __n
P )
D

R nq
Var - — 2z,
(5 1—n? )

where 8° are the true parameters, 6 are the estimated
parameters, N is the number of samples, Var (z) is

Var (9g 753) =

=l

D

the approximation Var (z) = E (2?) — E (x), where
E(2?) =+ 22 and B(z) = + 2N 2. Note
that 65 is a function of 61, and not included in the
CRLB expression.

3. VALIDATION

3.1. Validation of the ME model

The performance of the estimation method is inves-
tigated in Monte Carlo simulations, in Matlab. The
performance is evaluated in terms of correctness in es-
timates of 6. We start with an exact (error free) de-
scription of a slope. True values of the parameters are

01 = 0.5, 05 = 4/1 —9? ~ 0.87 and 03 = 0, respec-

tively, and £ = =5 : 1/(IN — 1) : 5. From this, z is
calculated. Random errors, Gaussian distributed with
zero mean and variance o2, = Jzz = 0.01 are added to
the coordinates € and z, respectively. The noise is gen-
erated separately for £ and z. Then the parameters are
estimated using TLS on the perturbed data set. The
simulations are repeated for an increasing number of
samples N. The statistical properties of the estimates
are studied by the mean square error (MSE), which is
averaged over 100 sets. The CRLB (theoretical limit)
is plotted together with the MSE for each case, see Fig.
3. We can see that the MSE of the parameter estimate
follows the theoretical bound.

3.2. Validation of the system

In [5] and [6] models of how the object’s shape, at-
mospheric, receiver and detector properties affect the
laser beam are described and simulations are shown.
Using these models we can simulate a scanning laser
radar system and generate synthetic images of objects
on the ground.

For simple object surfaces the laser impulse response,
i.e., the returning laser pulse, can be calculated ana-
lytically. In that case it is assumed that the impulse
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Fig. 3. Validation of the models. Var (9? — 91) as a

function of the number of samples IV is shown. Solid:
CRLB, dashed: MSE from a simulation of the ME
model, dotted: MSE from a simulation of the mea-
surement error model.

response is symmetric around the mean time of the two-
way propagation and that the laser beam has Gaussian
energy distribution. This is, however not suitable for
simulations of complex surfaces.

In the simulation method described in [6] the area of
the laser beam is divided into a large number of sub-
areas. In this way we can assume that each subarea
of the laser beam is reflected on a plane surface and
that complex object surfaces consist of a number of
plane surfaces. Therefore, no theories of reflection for
other objects than plane surfaces are needed. The as-
sumption that the energy distribution of the laser beam
inside each subarea is constant is also made.

In our simulations we let the object’s surface be a
tilted plane and we make one scan over the surface.
From the simulated laser radar data we estimate the
parameters 6 and compare them with the properties of
the tilted plane (i.e., #°). The number of subareas of
the laser beam is 20 x 20. The reflection properties
of the object’s surface are set to represent a metal sur-
face painted with a subdued color. The uncertainties in
the slant range estimates and measurement angles are
included. When the regressor ¢,, is retrieved, 0 is cal-
culated using TLS and Ehen the estimate is weighted

with R=1/2 to retrieve §. The parameter estimation
process is repeated in the same manner as described in
Section 3.1, but o7, and o7 are given by the uncertain-
ties in ¢,,. In Fig. 3 the MSE of a parameter estimate
from this simulated measurement is shown. Thus, by
using a proper pre-whitening matrix R the MSE of the
parameter estimates originating from the laser radar
system is also close to the CRLB.

It is worth mentioning that the approximation for-

mula (1) is applicable when f (7, scans Qpiten) 1S ap-
proximately linear. This is fulfilled in this case as
Oscan a0 Qpizen typically is rather small, e.g., ascan =
+10 — +20 degrees.

4. CONCLUSIONS

Our goal with this work is to connect the design para-
meters of the measurement system with the paramet-
ric description of the object. This gives us a tool for
evaluation of the effects of the system’s design para-
meters on the result of the recognition algorithm. For
example, it will be possible to study what maximum
scan angle that is allowed if a certain estimation er-
ror shall be accomplished. The system model includes
laser characteristics, object geometry, reflection, speck-
les, atmospheric attenuation, turbulence and a direct
detection receiver. Thus, the data generation is based
on sound calculations of physical system properties.

In this paper a tool for synthetic generation of scan-
ning laser radar data is described. The performance of
the simulated measurement system and the measure-
ment error model is evaluated. For both models the
error variances of the parameter estimates are close to
the Cramer-Rao lower bound.
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